Suppr超能文献

DNA 隐私:使用深度神经网络分析恶意 DNA 序列。

DNA Privacy: Analyzing Malicious DNA Sequences Using Deep Neural Networks.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2022 Mar-Apr;19(2):888-898. doi: 10.1109/TCBB.2020.3017191. Epub 2022 Apr 1.

Abstract

Recent advances in next-generation sequencing technologies have led to the successful insertion of video information into DNA using synthesized oligonucleotides. Several attempts have been made to embed larger data into living organisms. This process of embedding messages is called steganography and it is used for hiding and watermarking data to protect intellectual property. In contrast, steganalysis is a group of algorithms that serves to detect hidden information from covert media. Various methods have been developed to detect messages embedded in conventional covert channels. However, conventional steganalysis algorithms are mostly limited to common covert media. Most common detection approaches, such as frequency analysis-based methods, often overlook important signals when directly applied to DNA steganography and are easily bypassed by recently developed steganography techniques. To address the limitations of conventional approaches, a sequence-learning-based malicious DNA sequence analysis method based on neural networks has been proposed. The proposed method learns intrinsic distributions and identifies distribution variations using a classification score to predict whether a sequence is to be a coding or non-coding sequence. Based on our experiments and results, we have developed a framework to safeguard security against DNA steganography.

摘要

近年来,下一代测序技术的发展使得使用合成寡核苷酸成功地将视频信息插入 DNA 成为可能。已经有几次尝试将更大的数据嵌入到生物体中。这个嵌入消息的过程被称为隐写术,用于隐藏和标记数据以保护知识产权。相比之下,隐写分析是一组用于从隐蔽媒体中检测隐藏信息的算法。已经开发了各种方法来检测嵌入在常规隐蔽通道中的消息。然而,传统的隐写分析算法大多仅限于常见的隐蔽媒体。大多数常见的检测方法,如基于频率分析的方法,在直接应用于 DNA 隐写术时经常忽略重要信号,并且很容易被最近开发的隐写术技术绕过。为了解决传统方法的局限性,提出了一种基于神经网络的基于序列学习的恶意 DNA 序列分析方法。该方法使用分类得分来学习内在分布和识别分布变化,以预测序列是编码序列还是非编码序列。基于我们的实验和结果,我们开发了一个框架来保护 DNA 隐写术的安全。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验