Suppr超能文献

揭开原子级薄碳片上聚合物链吸附受限的界面区域。

Unraveling the Polymer Chain-Adsorbed Constrained Interfacial Region on an Atomistically Thin Carbon Sheet.

机构信息

Polymer Dynamics Laboratory, Department of Chemical Engineering , Indian Institute of Technology Kharagpur , Kharagpur , West Bengal 721302 , India.

Solid State Physics Division , Bhabha Atomic Research Centre , Mumbai 400085 , India.

出版信息

J Phys Chem B. 2019 Apr 4;123(13):2994-3001. doi: 10.1021/acs.jpcb.8b12577. Epub 2019 Mar 25.

Abstract

Confinement of graphene and its functional derivatives in synthetic and biomacromolecules has been widely demonstrated recently to manifest in several multiscale phenomena in their mixtures. However, the intricate adsorbed interfacial region formed between polymer chains and a single layer of atomistically thin carbon sheet hitherto evaded an understanding of its nature and characteristics. Here, we reveal the structure of this constrained region and estimate the thickness of the adsorbed polymer layer on a single layer of an atomistically thin graphene oxide sheet using both direct experiments and molecular dynamics simulations. We use small-angle neutron scattering on a model multicomponent mixture formed by an adsorbing polymer, graphene oxide, and solvent for revealing the structure of the constrained interfacial region. We quantify the intricate adsorbed polymer layer thickness on a single layer of atomistically thin graphene oxide sheet by Euclidean approximation of the experimentally observed self-similar interfacial structure. The state of polymer chain random walk and influence of unadsorbed chains under experimental conditions are investigated and juxtaposed against the accuracy of this quantification. For long-chain polymers, the adsorbed layer thickness increases with increasing polymer molecular weight and shows a scaling relationship δ ∼ R with the polymer radius of gyration. For short-chain polymers, the thickness is nearly independent of molecular weight and shows a scaling relationship δ ∼ 0.6 R. Coarse-grained molecular dynamics simulations performed on a model system similar to experiments qualitatively ratify the experimentally observed molecular weight-thickness relationship. Simulations show no discernible scaling relationship between radius of gyration and adsorbed layer thickness for low-molecular-weight polymers but show a consistent scaling δ ∼ R for high-molecular-weight polymers. A comparison between results from experiments and simulations indicates a discerning pathway in deciphering interface-governed multiscale phenomena in mixtures of adsorbing macromolecules with graphene and its functional derivatives.

摘要

最近已经广泛证明了将石墨烯及其功能衍生物限制在合成和生物大分子中的方法,这在它们的混合物中表现出了几种多尺度现象。然而,到目前为止,聚合物链和单层原子级薄的碳片之间形成的复杂吸附界面区域的性质和特征仍未得到理解。在这里,我们揭示了这个受限区域的结构,并使用直接实验和分子动力学模拟来估计单层原子级薄氧化石墨烯片上吸附聚合物层的厚度。我们使用小角中子散射来研究由吸附聚合物、氧化石墨烯和溶剂组成的模型多组分混合物,以揭示受限界面区域的结构。我们通过实验观察到的自相似界面结构的欧几里得近似来量化单层原子级薄氧化石墨烯片上复杂的吸附聚合物层厚度。我们研究了实验条件下聚合物链无规行走的状态和未吸附链的影响,并与这种量化的准确性进行了对比。对于长链聚合物,吸附层厚度随聚合物分子量的增加而增加,并显示出与聚合物回转半径的标度关系 δ∼R。对于短链聚合物,厚度几乎与分子量无关,并显示出 δ∼0.6R 的标度关系。在与实验相似的模型系统上进行的粗粒化分子动力学模拟定性地证实了实验观察到的分子量-厚度关系。模拟显示,低分子量聚合物的回转半径和吸附层厚度之间没有明显的标度关系,但高分子量聚合物的吸附层厚度与回转半径有一致的标度关系 δ∼R。实验结果和模拟结果的比较表明,在吸附大分子与石墨烯及其功能衍生物混合物中解释界面控制的多尺度现象时,有一条明确的途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验