Suppr超能文献

葡萄花色苷合成酶介导的莱菔氰苷氧化转化仅生成槲皮素。

Oxidative Transformation of Leucocyanidin by Anthocyanidin Synthase from Vitis vinifera Leads Only to Quercetin.

机构信息

Chimie et Biologie des Membranes et des Nano-objets (CBMN, UMR 5248) , Université de Bordeaux , 33615 Pessac , France.

Institut des Sciences de la Vigne et du Vin (ISVV, UMR 1287) , Université de Bordeaux , 33140 Villenave d'Ornon , France.

出版信息

J Agric Food Chem. 2019 Apr 3;67(13):3595-3604. doi: 10.1021/acs.jafc.8b06968. Epub 2019 Mar 21.

Abstract

Anthocyanidin synthase from Vitis vinifera ( VvANS) catalyzes the in vitro transformation of the natural isomer of leucocyanidin, 2 R,3 S,4 S- cis-leucocyanidin, into 2 R,4 S-flavan-3,3,4-triol ([M + H], m/ z 323) and quercetin. The C-hydroxylation product 2 R,4 S-flavan-3,3,4-triol is first produced and its C,C-dehydration product is in tautomeric equilibrium with (+)-dihydroquercetin. The latter undergoes a second VvANS-catalyzed C-hydroxylation leading to a 4-keto-2 R-flavan-3,3-gem-diol which upon dehydration gives quercetin. The unnatural isomer of leucocyanidin, 2 R,3 S,4 R- trans-leucocyanidin, is similarly transformed into quercetin upon C,C-dehydration, but unlike 3,4- cis-leucocyanidin, it also undergoes some C,C-dehydration followed by an acid-catalyzed hydroxyl group extrusion at C to give traces of cyanidin. Overall, the C,C- trans isomer of leucocyanidin is transformed into 2 R,4 R-flavan-3,3,4-triol (M + 1, m/ z 323), (+)-DHQ, (-)-epiDHQ, quercetin, and traces of cyanidin. Our data bring the first direct observation of 3,4- cis-leucocyanidin- and 3,4- trans-leucocyanidin-derived 3,3-gem-diols, supporting the idea that the generic function of ANS is to catalyze the C-hydroxylation of its substrates. No cyanidin is produced with the natural cis isomer of leucocyanidin, and only traces with the unnatural trans isomer, which suggests that anthocyanidin synthase requires other substrate(s) for the in vivo formation of anthocyanidins.

摘要

葡萄 VvANS 中的花色苷合酶催化天然异构体 2R,3S,4S-顺式-白藜芦醇氰苷转化为 2R,4S-黄烷-3,3,4-三醇([M+H]+,m/z323)和槲皮素。首先产生 C-羟化产物 2R,4S-黄烷-3,3,4-三醇,其 C,C-脱水产物与(+)-二氢槲皮素处于互变异构平衡状态。后者经历第二次 VvANS 催化的 C-羟化反应,生成 4-酮-2R-黄烷-3,3-双二醇,经脱水后得到槲皮素。白藜芦醇氰苷的非天然异构体 2R,3S,4R-反式白藜芦醇氰苷在 C,C-脱水后也转化为槲皮素,但与 3,4-顺式白藜芦醇氰苷不同,它还经历一些 C,C-脱水,然后在 C 位经酸催化羟基消除,生成微量的飞燕草素。总的来说,白藜芦醇氰苷的 C,C-反式异构体转化为 2R,4R-黄烷-3,3,4-三醇(M+1,m/z323)、(+)-DHQ、(-)-表 DHQ、槲皮素和微量的飞燕草素。我们的数据首次直接观察到 3,4-顺式白藜芦醇氰苷和 3,4-反式白藜芦醇氰苷衍生的 3,3-双二醇,支持了 ANS 的一般功能是催化其底物的 C-羟化反应的观点。天然顺式异构体的白藜芦醇氰苷不产生飞燕草素,只有微量的非天然反式异构体,这表明花色苷合酶需要其他底物才能在体内形成花色素苷。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验