Suppr超能文献

基于细胞内肌动蛋白网络的显微镜图像的卷积神经网络细胞分类。

Convolutional neural network for cell classification using microscope images of intracellular actin networks.

机构信息

Open FIESTA Center, Tsinghua University, Shenzhen, P.R. China.

Center for Nano and Micro Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing, P.R. China.

出版信息

PLoS One. 2019 Mar 13;14(3):e0213626. doi: 10.1371/journal.pone.0213626. eCollection 2019.

Abstract

Automated cell classification is an important yet a challenging computer vision task with significant benefits to biomedicine. In recent years, there have been several studies attempted to build an artificial intelligence-based cell classifier using label-free cellular images obtained from an optical microscope. Although these studies showed promising results, such classifiers were not able to reflect the biological diversity of different types of cell. While in terms of malignant cell, it is well-known that intracellular actin filaments are altered substantially. This is thought to be closely related to the abnormal growth features of tumor cells, their ability to invade surrounding tissues and also to metastasize. Therefore, being able to classify different types of cell based on their biological behaviors using automated technique is more advantageous. This article reveals the difference in the actin cytoskeleton structures between breast normal and cancer cells, which may provide new information regarding malignant changes and be used as additional diagnostic marker. Since the features cannot be well detected by human eyes, we proposed the application of convolutional neural network (CNN) in cell classification based on actin-labeled fluorescence microscopy images. The CNN was evaluated on a large number of actin-labeled fluorescence microscopy images of one human normal breast epithelial cell line and two types of human breast cancer cell line with different levels of aggressiveness. The study revealed that the CNN performed better in the cell classification task compared to a human expert.

摘要

自动细胞分类是一项重要且具有挑战性的计算机视觉任务,对生物医学有重要意义。近年来,已有多项研究尝试使用从光学显微镜获得的无标记细胞图像构建基于人工智能的细胞分类器。尽管这些研究取得了有希望的结果,但这些分类器无法反映不同类型细胞的生物学多样性。而对于恶性细胞,众所周知,细胞内的肌动蛋白丝发生了实质性的改变。这被认为与肿瘤细胞的异常生长特征、侵袭周围组织和转移的能力密切相关。因此,能够使用自动化技术根据细胞的生物学行为对不同类型的细胞进行分类更具优势。本文揭示了正常乳腺细胞和癌细胞之间肌动蛋白细胞骨架结构的差异,这可能为恶性变化提供新的信息,并可作为附加的诊断标志物。由于人类肉眼无法很好地检测到这些特征,我们提出将卷积神经网络(CNN)应用于基于肌动蛋白标记荧光显微镜图像的细胞分类中。在大量具有不同侵袭性的人正常乳腺上皮细胞系和两种人乳腺癌细胞系的肌动蛋白标记荧光显微镜图像上评估了 CNN。研究表明,与人类专家相比,CNN 在细胞分类任务中的表现更好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/157a/6415833/c01a43c6546a/pone.0213626.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验