Suppr超能文献

微流控芯片表面离子印迹整体式毛细管微萃取芯片与 ICP-MS 在线联用,高通量分析人体液中的钆元素。

Microfluidic array surface ion-imprinted monolithic capillary microextraction chip on-line hyphenated with ICP-MS for the high throughput analysis of gadolinium in human body fluids.

机构信息

Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China.

出版信息

Analyst. 2019 Apr 8;144(8):2736-2745. doi: 10.1039/c8an02057d.

Abstract

A novel method by hyphenating chip-based array ion-imprinted monolithic microextraction with inductively coupled plasma mass spectrometry (ICP-MS) was proposed for the online analysis of trace Gd in biological samples in this work. The poly(γ-methacryloxypropyltrimethoxysilane@Gd3+-surface ion-imprinted polymer) [poly(γ-MAPS@Gd3+-SIIP)] monolithic capillary was prepared via in situ polymerization on the vinyl-modified surface of poly(γ-MAPS) using Eu3+ as the mimic template. The prepared ion-imprinted monolithic capillary possessed higher selectivity and adsorption capacity to Gd3+ than the non-imprinted monolithic capillary. Eight poly(γ-MAPS@Gd3+-SIIP) monolithic capillaries were embedded in the channels of a microfluidic chip to fabricate a chip-based array microextraction device. Factors affecting the selectivity of the prepared ion-imprinted monolithic capillary including imprinted time and the composition of the prepolymerization solution, and extraction conditions for the fabricated chip-based array ion-imprinted monolithic capillary microextraction platform were optimized. A sample throughput of 18 h-1 was achieved along with a low detection limit of 1.27 ng L-1 for Gd3+. The proposed chip-based array poly(γ-MAPS@Gd3+-SIIP) monolithic microextraction-ICP-MS method was used for the analysis of trace Gd in human urine and serum, and the recovery for spiking experiments was in the range of 88.1-96.7%. The developed integrated analysis platform possesses good interference resistance, high automation, high sensitivity and low consumption of the sample/agent, which makes it very suitable for the analysis of trace elements in complicated biological samples.

摘要

本文提出了一种新颖的方法,即将芯片基阵列离子印迹整体微萃取与电感耦合等离子体质谱(ICP-MS)联用,用于在线分析生物样品中的痕量 Gd。通过在聚(γ-甲氧基丙基三甲氧基硅烷@Gd3+-表面离子印迹聚合物)[聚(γ-MAPS@Gd3+-SIIP)]整体毛细管上原位聚合,使用 Eu3+作为模拟模板,在聚(γ-MAPS)的乙烯基改性表面上制备了整体毛细管。制备的离子印迹整体毛细管对 Gd3+具有更高的选择性和吸附容量。将 8 根聚(γ-MAPS@Gd3+-SIIP)整体毛细管嵌入微流控芯片的通道中,制备了芯片基阵列微萃取装置。优化了影响制备的离子印迹整体毛细管选择性的因素,包括印迹时间和预聚合溶液的组成,以及制备的芯片基阵列离子印迹整体毛细管微萃取平台的萃取条件。实现了 18 h-1 的样品通量,并获得了 Gd3+的低检测限为 1.27 ng L-1。该芯片基阵列聚(γ-MAPS@Gd3+-SIIP)整体微萃取-ICP-MS 方法用于分析人尿和血清中的痕量 Gd,加标实验的回收率在 88.1-96.7%之间。所开发的集成分析平台具有良好的抗干扰能力、高自动化程度、高灵敏度和低样品/试剂消耗,非常适合分析复杂生物样品中的微量元素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验