Suppr超能文献

使用行政索赔算法识别肺动脉高压患者。

Identifying Patients with Pulmonary Arterial Hypertension Using Administrative Claims Algorithms.

机构信息

1 Johns Hopkins University School of Medicine, Baltimore, Maryland.

2 Department of Medicine, Vanderbilt University, Nashville, Tennessee.

出版信息

Ann Am Thorac Soc. 2019 Jul;16(7):797-806. doi: 10.1513/AnnalsATS.201810-672CME.

Abstract

Retrospective administrative claims database studies provide real-world evidence about treatment patterns, healthcare resource use, and costs for patients and are increasingly used to inform policy-making, drug formulary, and regulatory decisions. However, there is no standard methodology to identify patients with pulmonary arterial hypertension (PAH) from administrative claims data. Given the number of approved drugs now available for patients with PAH, the cost of PAH treatments, and the significant healthcare resource use associated with the care of patients with PAH, there is a considerable need to develop an evidence-based and systematic approach to accurately identify these patients in claims databases. A panel of pulmonary hypertension clinical experts and researchers experienced in retrospective claims database studies convened to review relevant literature and recommend best practices for developing algorithms to identify patients with PAH in administrative claims databases specific to a particular research hypothesis.

摘要

回顾性行政索赔数据库研究为患者的治疗模式、医疗资源利用和成本提供了真实世界的证据,并且越来越多地用于为政策制定、药物处方和监管决策提供信息。然而,目前还没有从行政索赔数据中识别肺动脉高压(PAH)患者的标准方法。鉴于目前有许多批准用于 PAH 患者的药物,PAH 治疗的成本,以及与 PAH 患者护理相关的大量医疗资源利用,因此需要开发一种基于证据的系统方法,以便在索赔数据库中准确识别这些患者。一个由肺动脉高压临床专家和有回顾性索赔数据库研究经验的研究人员组成的小组召开会议,审查相关文献,并就如何为特定研究假设制定在行政索赔数据库中识别 PAH 患者的算法提出最佳实践建议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a96d/6600840/7c61f8b4cc39/AnnalsATS.201810-672CME_f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验