Department of Biomedical Engineering, Indian Institute of Technology Hyderabad (IITH), Sangareddy, Telangana, India.
Centre for Nanofibers & Nanotechnology, NUS Nanoscience & Nanotechnology Initiative, Singapore.
J Tissue Eng Regen Med. 2019 Jun;13(6):908-924. doi: 10.1002/term.2839. Epub 2019 May 14.
In spite of being a new field, three-dimensional (3D) bioprinting has undergone rapid growth in the recent years. Bioprinting methods offer a unique opportunity for stem cell distribution, positioning, and differentiation at the microscale to make the differentiated architecture of any tissue while maintaining precision and control over the cellular microenvironment. Bioprinting introduces a wide array of approaches to modify stem cell fate. This review discusses these methodologies of 3D bioprinting stem cells. Fabricating a fully operational tissue or organ construct with a long life will be the most significant challenge of 3D bioprinting. Once this is achieved, a whole human organ can be fabricated for the defect place at the site of surgery.
尽管是一个新领域,但三维(3D)生物打印在近年来经历了快速发展。生物打印方法为干细胞在微尺度上的分布、定位和分化提供了独特的机会,使任何组织的分化结构得以形成,同时保持对细胞微环境的精确控制。生物打印为改变干细胞命运引入了广泛的方法。本综述讨论了这些 3D 生物打印干细胞的方法。制造具有长寿命的完全可操作的组织或器官构建体将是 3D 生物打印的最大挑战。一旦实现这一目标,就可以在手术部位制造出用于缺陷部位的整个人类器官。