文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

探索社交媒体上的时间性自杀行为模式:来自 Twitter 分析的洞察。

Exploring temporal suicidal behavior patterns on social media: Insight from Twitter analytics.

机构信息

Zhejiang Sci-Tech University, China.

The University of Texas School of Biomedical Informatics, USA.

出版信息

Health Informatics J. 2020 Jun;26(2):738-752. doi: 10.1177/1460458219832043. Epub 2019 Mar 14.


DOI:10.1177/1460458219832043
PMID:30866708
Abstract

A valid mechanism for suicide detection and intervention to a wider population online has not yet been fully established. With the increasing suicide rate, we proposed an approach that aims to examine temporal patterns of potential suicidal ideations and behaviors on Twitter to better understand their risk factors and time-varying features. It identifies latent suicide topics and then models the suicidal topic-related score time series to quantitatively represent behavior patterns on Twitter. After evaluated on a collection of suicide-related tweets in 2016, 13 key risk factors were discovered and the temporal patterns of suicide behavior on different days during 1 week were identified to highlight the distinct time-varying features related to different risk factors. This study is practical to help public health services and others to develop refined prevention strategies, to monitor and support a population of high-risk at right moments.

摘要

尚未建立有效的自杀检测和干预机制,以覆盖更广泛的在线人群。随着自杀率的不断上升,我们提出了一种方法,旨在研究潜在自杀意念和行为在 Twitter 上的时间模式,以更好地了解其风险因素和时变特征。它可以识别潜在的自杀主题,然后对自杀主题相关得分时间序列进行建模,以定量表示 Twitter 上的行为模式。在对 2016 年收集的与自杀相关的推文进行评估后,发现了 13 个关键风险因素,并确定了自杀行为在一周内不同日子的时间模式,以突出与不同风险因素相关的不同时变特征。这项研究具有实际意义,可以帮助公共卫生服务机构和其他机构制定更精细的预防策略,以便在适当的时间监测和支持高危人群。

相似文献

[1]
Exploring temporal suicidal behavior patterns on social media: Insight from Twitter analytics.

Health Informatics J. 2020-6

[2]
Exploring the Risk of Suicide in Real Time on Spanish Twitter: Observational Study.

JMIR Public Health Surveill. 2022-5-17

[3]
Changes in suicide-related tweets before and during the COVID-19 pandemic in France: The importance of social media monitoring in public health prediction.

Encephale. 2024-10

[4]
The association of suicide-related Twitter use with suicidal behaviour: a cross-sectional study of young internet users in Japan.

J Affect Disord. 2015-1-1

[5]
Public Surveillance of Social Media for Suicide Using Advanced Deep Learning Models in Japan: Time Series Study From 2012 to 2022.

J Med Internet Res. 2023-6-2

[6]
Covariance in diurnal patterns of suicide-related expressions on Twitter and recorded suicide deaths.

Soc Sci Med. 2020-5

[7]
Social media monitoring of suicidal content and change in trends of Japanese twitter content around the Zama suicide pact slayings.

Psychiatry Res. 2022-5

[8]
Exploring Behavior of People with Suicidal Ideation in a Chinese Online Suicidal Community.

Int J Environ Res Public Health. 2018-12-26

[9]
Automatic extraction of informal topics from online suicidal ideation.

BMC Bioinformatics. 2018-6-13

[10]
Mediation Effect of Suicide-Related Social Media Use Behaviors on the Association Between Suicidal Ideation and Suicide Attempt: Cross-Sectional Questionnaire Study.

J Med Internet Res. 2020-4-28

引用本文的文献

[1]
Mapping the Mpox discourse: A network and sentiment analysis.

Explor Res Clin Soc Pharm. 2024-10-9

[2]
Staying Home, Tweeting Hope: Mixed Methods Study of Twitter Sentiment Geographical Index During US Stay-At-Home Orders.

J Med Internet Res. 2023-7-24

[3]
Assessing Methods for Evaluating the Number of Components in Non-Negative Matrix Factorization.

Mathematics (Basel). 2021-11-2

[4]
Understanding information behavior of South Korean Twitter users who express suicidality on Twitter.

Digit Health. 2022-3-21

[5]
Identification of Research Priorities during the COVID-19 Pandemic: Implications for Its Management.

Int J Environ Res Public Health. 2021-12-12

[6]
Comparing Suicide Risk Insights derived from Clinical and Social Media data.

AMIA Jt Summits Transl Sci Proc. 2021

[7]
A machine learning approach predicts future risk to suicidal ideation from social media data.

NPJ Digit Med. 2020-5-26

[8]
Analysis of Twitter to Identify Topics Related to Eating Disorder Symptoms.

Proc (IEEE Int Conf Healthc Inform). 2019-6

[9]
Distress, Suicidality, and Affective Disorders at the Time of Social Networks.

Curr Psychiatry Rep. 2019-9-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索