日本利用先进深度学习模型对社交媒体进行自杀公共监测:2012 年至 2022 年的时间序列研究。

Public Surveillance of Social Media for Suicide Using Advanced Deep Learning Models in Japan: Time Series Study From 2012 to 2022.

机构信息

Graduate School of Interdisciplinary Information Studies, University of Tokyo, Tokyo, Japan.

School of Earth and Environmental Sciences, The University of Queensland, Brisbane, Australia.

出版信息

J Med Internet Res. 2023 Jun 2;25:e47225. doi: 10.2196/47225.

Abstract

BACKGROUND

Social media platforms have been increasingly used to express suicidal thoughts, feelings, and acts, raising public concerns over time. A large body of literature has explored the suicide risks identified by people's expressions on social media. However, there is not enough evidence to conclude that social media provides public surveillance for suicide without aligning suicide risks detected on social media with actual suicidal behaviors. Corroborating this alignment is a crucial foundation for suicide prevention and intervention through social media and for estimating and predicting suicide in countries with no reliable suicide statistics.

OBJECTIVE

This study aimed to corroborate whether the suicide risks identified on social media align with actual suicidal behaviors. This aim was achieved by tracking suicide risks detected by 62 million tweets posted in Japan over a 10-year period and assessing the locational and temporal alignment of such suicide risks with actual suicide behaviors recorded in national suicide statistics.

METHODS

This study used a human-in-the-loop approach to identify suicide-risk tweets posted in Japan from January 2013 to December 2022. This approach involved keyword-filtered data mining, data scanning by human efforts, and data refinement via an advanced natural language processing model termed Bidirectional Encoder Representations from Transformers. The tweet-identified suicide risks were then compared with actual suicide records in both temporal and spatial dimensions to validate if they were statistically correlated.

RESULTS

Twitter-identified suicide risks and actual suicide records were temporally correlated by month in the 10 years from 2013 to 2022 (correlation coefficient=0.533; P<.001); this correlation coefficient is higher at 0.652 when we advanced the Twitter-identified suicide risks 1 month earlier to compare with the actual suicide records. These 2 indicators were also spatially correlated by city with a correlation coefficient of 0.699 (P<.001) for the 10-year period. Among the 267 cities with the top quintile of suicide risks identified from both tweets and actual suicide records, 73.5% (n=196) of cities overlapped. In addition, Twitter-identified suicide risks were at a relatively lower level after midnight compared to a higher level in the afternoon, as well as a higher level on Sundays and Saturdays compared to weekdays.

CONCLUSIONS

Social media platforms provide an anonymous space where people express their suicidal thoughts, ideation, and acts. Such expressions can serve as an alternative source to estimating and predicting suicide in countries without reliable suicide statistics. It can also provide real-time tracking of suicide risks, serving as an early warning for suicide. The identification of areas where suicide risks are highly concentrated is crucial for location-based mental health planning, enabling suicide prevention and intervention through social media in a spatially and temporally explicit manner.

摘要

背景

社交媒体平台越来越多地被用于表达自杀想法、感受和行为,随着时间的推移,这引发了公众的担忧。大量文献探讨了人们在社交媒体上的表达所识别出的自杀风险。然而,没有足够的证据表明社交媒体提供了自杀的公共监测,而无需将社交媒体上检测到的自杀风险与实际自杀行为相匹配。通过社交媒体进行自杀预防和干预,以及在没有可靠自杀统计数据的国家中估计和预测自杀,证实这种一致性是至关重要的。

目的

本研究旨在证实社交媒体上识别出的自杀风险是否与实际自杀行为相匹配。通过跟踪在日本发布的 6200 万条推文,识别出 10 年来的自杀风险,并评估这些自杀风险在时间和空间上与国家自杀统计数据中记录的实际自杀行为的一致性,实现了这一目标。

方法

本研究采用人机交互的方法,从 2013 年 1 月至 2022 年 12 月期间在日本发布的推文中识别出自杀风险推文。该方法涉及基于关键词的筛选数据挖掘、人工数据扫描以及通过一种称为双向编码器表示从转换器的高级自然语言处理模型进行数据细化。然后,将通过推特识别出的自杀风险与实际自杀记录在时间和空间上进行比较,以验证它们是否存在统计学相关性。

结果

在 2013 年至 2022 年的 10 年期间,推特识别出的自杀风险和实际自杀记录按月在时间上呈正相关(相关系数=0.533;P<.001);当我们将推特识别出的自杀风险提前一个月与实际自杀记录进行比较时,这个相关系数更高,达到 0.652。这两个指标在空间上也按城市呈正相关,在 10 年期间的相关系数为 0.699(P<.001)。在推特和实际自杀记录中都识别出自杀风险最高的 267 个城市中,有 73.5%(n=196)的城市存在重叠。此外,与下午相比,推特识别出的自杀风险在午夜后相对较低,与工作日相比,周日和周六的自杀风险较高。

结论

社交媒体平台为人们表达自杀想法、意念和行为提供了一个匿名空间。这些表达可以作为一种替代来源,用于估计和预测没有可靠自杀统计数据的国家的自杀。它还可以提供自杀风险的实时跟踪,作为自杀的预警。识别自杀风险高度集中的地区对于基于位置的心理健康规划至关重要,能够以空间和时间明确的方式通过社交媒体进行自杀预防和干预。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/023e/10276317/80f62aa97130/jmir_v25i1e47225_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索