文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种机器学习方法可根据社交媒体数据预测未来出现自杀意念的风险。

A machine learning approach predicts future risk to suicidal ideation from social media data.

作者信息

Roy Arunima, Nikolitch Katerina, McGinn Rachel, Jinah Safiya, Klement William, Kaminsky Zachary A

机构信息

The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON Canada.

Division of Thoracic Surgery, The Ottawa Research Hospital Research Institute and Ottawa University, Ottawa, ON Canada.

出版信息

NPJ Digit Med. 2020 May 26;3:78. doi: 10.1038/s41746-020-0287-6. eCollection 2020.


DOI:10.1038/s41746-020-0287-6
PMID:32509975
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7250902/
Abstract

Machine learning analysis of social media data represents a promising way to capture longitudinal environmental influences contributing to individual risk for suicidal thoughts and behaviors. Our objective was to generate an algorithm termed "Suicide Artificial Intelligence Prediction Heuristic (SAIPH)" capable of predicting future risk to suicidal thought by analyzing publicly available Twitter data. We trained a series of neural networks on Twitter data queried against suicide associated psychological constructs including burden, stress, loneliness, hopelessness, insomnia, depression, and anxiety. Using 512,526 tweets from  = 283 suicidal ideation (SI) cases and 3,518,494 tweets from 2655 controls, we then trained a random forest model using neural network outputs to predict binary SI status. The model predicted  = 830 SI events derived from an independent set of 277 suicidal ideators relative to  = 3159 control events in all non-SI individuals with an AUC of 0.88 (95% CI 0.86-0.90). Using an alternative approach, our model generates temporal prediction of risk such that peak occurrences above an individual specific threshold denote a ~7 fold increased risk for SI within the following 10 days (OR = 6.7 ± 1.1,  = 9 × 10). We validated our model using regionally obtained Twitter data and observed significant associations of algorithm SI scores with county-wide suicide death rates across 16 days in August and in October, 2019, most significantly in younger individuals. Algorithmic approaches like SAIPH have the potential to identify individual future SI risk and could be easily adapted as clinical decision tools aiding suicide screening and risk monitoring using available technologies.

摘要

对社交媒体数据进行机器学习分析是一种很有前景的方法,可用于捕捉对个体自杀念头和行为风险有影响的纵向环境因素。我们的目标是生成一种名为“自杀人工智能预测启发式算法(SAIPH)”的算法,该算法能够通过分析公开可用的推特数据来预测未来自杀念头的风险。我们在针对与自杀相关的心理结构(包括负担、压力、孤独、绝望、失眠、抑郁和焦虑)查询的推特数据上训练了一系列神经网络。我们使用来自283例自杀意念(SI)病例的512,526条推文和来自2655名对照的3,518,494条推文,然后使用神经网络输出训练了一个随机森林模型,以预测二元SI状态。该模型在所有非SI个体中预测了来自277名自杀意念者独立组的830起SI事件,相对于3159起对照事件,曲线下面积(AUC)为0.88(95%置信区间0.86 - 0.90)。使用另一种方法,我们的模型生成风险的时间预测,使得高于个体特定阈值的峰值出现表示在接下来的10天内SI风险增加约7倍(比值比[OR]=6.7±1.1,P = 9×10⁻⁹)。我们使用区域获取的推特数据验证了我们的模型,并观察到算法SI分数与2019年8月和10月16天内全县自杀死亡率之间存在显著关联,在年轻个体中最为显著。像SAIPH这样的算法方法有潜力识别个体未来的SI风险,并且可以很容易地改编为临床决策工具,利用现有技术辅助自杀筛查和风险监测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0a7/7250902/8402327c2b58/41746_2020_287_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0a7/7250902/bf4fe56dab7b/41746_2020_287_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0a7/7250902/96073c0bd9c8/41746_2020_287_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0a7/7250902/3dbdb96067bd/41746_2020_287_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0a7/7250902/8402327c2b58/41746_2020_287_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0a7/7250902/bf4fe56dab7b/41746_2020_287_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0a7/7250902/96073c0bd9c8/41746_2020_287_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0a7/7250902/3dbdb96067bd/41746_2020_287_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0a7/7250902/8402327c2b58/41746_2020_287_Fig4_HTML.jpg

相似文献

[1]
A machine learning approach predicts future risk to suicidal ideation from social media data.

NPJ Digit Med. 2020-5-26

[2]
Association of Genome-Wide Polygenic Scores for Multiple Psychiatric and Common Traits in Preadolescent Youths at Risk of Suicide.

JAMA Netw Open. 2022-2-1

[3]
Towards understanding and predicting suicidality in women: biomarkers and clinical risk assessment.

Mol Psychiatry. 2016-4-5

[4]
Detecting Potentially Harmful and Protective Suicide-Related Content on Twitter: Machine Learning Approach.

J Med Internet Res. 2022-8-17

[5]
Predicting acute suicidal ideation on Instagram using ensemble machine learning models.

Internet Interv. 2021-7-6

[6]
Machine learning prediction of suicidal ideation, planning, and attempt among Korean adults: A population-based study.

SSM Popul Health. 2022-9-14

[7]
Identifying the suicidal ideation risk group among older adults in rural areas: Developing a predictive model using machine learning methods.

J Adv Nurs. 2023-2

[8]
Neural activity during inhibitory control predicts suicidal ideation with machine learning.

NPP Digit Psychiatry Neurosci. 2024

[9]
Public Surveillance of Social Media for Suicide Using Advanced Deep Learning Models in Japan: Time Series Study From 2012 to 2022.

J Med Internet Res. 2023-6-2

[10]
Emotional Distress During COVID-19 by Mental Health Conditions and Economic Vulnerability: Retrospective Analysis of Survey-Linked Twitter Data With a Semisupervised Machine Learning Algorithm.

J Med Internet Res. 2023-3-16

引用本文的文献

[1]
The relationship between social network addiction, online gaming addiction, and suicide ideation: mediating and moderating role of loneliness.

BMC Psychol. 2025-8-30

[2]
Building a Natural Language Processing Artificial Intelligence to Predict Suicide-Related Events Based on Patient Portal Message Data.

Mayo Clin Proc Digit Health. 2023-9-30

[3]
Artificial Intelligence in Psychiatry: A Review of Biological and Behavioral Data Analyses.

Diagnostics (Basel). 2025-2-11

[4]
The steps that young people and suicide prevention professionals think the social media industry and policymakers should take to improve online safety. A nested cross-sectional study within a Delphi consensus approach.

Front Child Adolesc Psychiatry. 2023-12-15

[5]
Explainable AI-based suicidal and non-suicidal ideations detection from social media text with enhanced ensemble technique.

Sci Rep. 2025-1-7

[6]
Artificial intelligence and machine learning techniques for suicide prediction: Integrating dietary patterns and environmental contaminants.

Heliyon. 2024-12-4

[7]
Unveiling the Influence of AI on Advancements in Respiratory Care: Narrative Review.

Interact J Med Res. 2024-12-20

[8]
Machine Learning-Based Suicide Risk Prediction Model for Suicidal Trajectory on Social Media Following Suicidal Mentions: Independent Algorithm Validation.

J Med Internet Res. 2024-12-5

[9]
Comparative analysis of BERT-based and generative large language models for detecting suicidal ideation: a performance evaluation study.

Cad Saude Publica. 2024

[10]
Automatically extracting social determinants of health for suicide: a narrative literature review.

Npj Ment Health Res. 2024-11-6

本文引用的文献

[1]
Suicidal ideation disclosure: Patterns, correlates and outcome.

Psychiatry Res. 2019-5-16

[2]
Exploring temporal suicidal behavior patterns on social media: Insight from Twitter analytics.

Health Informatics J. 2020-6

[3]
"I just might kill myself": Suicide expressions on Twitter.

Death Stud. 2018-12-17

[4]
Monitoring Online Discussions About Suicide Among Twitter Users With Schizophrenia: Exploratory Study.

JMIR Ment Health. 2018-12-13

[5]
Social Media and Suicide: A Review of Technology-Based Epidemiology and Risk Assessment.

Telemed J E Health. 2019-10

[6]
Tracking the Werther Effect on social media: Emotional responses to prominent suicide deaths on twitter and subsequent increases in suicide.

Soc Sci Med. 2018-10-12

[7]
Extracting psychiatric stressors for suicide from social media using deep learning.

BMC Med Inform Decis Mak. 2018-7-23

[8]
Increasing Interest of Mass Communication Media and the General Public in the Distribution of Tweets About Mental Disorders: Observational Study.

J Med Internet Res. 2018-5-28

[9]
Twitter as a place where people meet to make suicide pacts.

Public Health. 2018-4-22

[10]
A Systematic Literature Review of Technologies for Suicidal Behavior Prevention.

J Med Syst. 2018-3-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索