Suppr超能文献

一种可扩展的解决方案,用于从 ES 前体细胞中分离出人类多能临床级神经干细胞。

A scalable solution for isolating human multipotent clinical-grade neural stem cells from ES precursors.

机构信息

Department of Anesthesiology, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA.

Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Kamenice 3, 62500, Brno, Czech Republic.

出版信息

Stem Cell Res Ther. 2019 Mar 12;10(1):83. doi: 10.1186/s13287-019-1163-7.

Abstract

BACKGROUND

A well-characterized method has not yet been established to reproducibly, efficiently, and safely isolate large numbers of clinical-grade multipotent human neural stem cells (hNSCs) from embryonic stem cells (hESCs). Consequently, the transplantation of neurogenic/gliogenic precursors into the CNS for the purpose of cell replacement or neuroprotection in humans with injury or disease has not achieved widespread testing and implementation.

METHODS

Here, we establish an approach for the in vitro isolation of a highly expandable population of hNSCs using the manual selection of neural precursors based on their colony morphology (CoMo-NSC). The purity and NSC properties of established and extensively expanded CoMo-NSC were validated by expression of NSC markers (flow cytometry, mRNA sequencing), lack of pluripotent markers and by their tumorigenic/differentiation profile after in vivo spinal grafting in three different animal models, including (i) immunodeficient rats, (ii) immunosuppressed ALS rats (SOD1), or (iii) spinally injured immunosuppressed minipigs.

RESULTS

In vitro analysis of established CoMo-NSCs showed a consistent expression of NSC markers (Sox1, Sox2, Nestin, CD24) with lack of pluripotent markers (Nanog) and stable karyotype for more than 15 passages. Gene profiling and histology revealed that spinally grafted CoMo-NSCs differentiate into neurons, astrocytes, and oligodendrocytes over a 2-6-month period in vivo without forming neoplastic derivatives or abnormal structures. Moreover, transplanted CoMo-NSCs formed neurons with synaptic contacts and glia in a variety of host environments including immunodeficient rats, immunosuppressed ALS rats (SOD1G93A), or spinally injured minipigs, indicating these cells have favorable safety and differentiation characteristics.

CONCLUSIONS

These data demonstrate that manually selected CoMo-NSCs represent a safe and expandable NSC population which can effectively be used in prospective human clinical cell replacement trials for the treatment of a variety of neurodegenerative disorders, including ALS, stroke, spinal traumatic, or spinal ischemic injury.

摘要

背景

目前尚未建立一种可靠、高效且安全的方法,能够从胚胎干细胞(hESCs)中大量分离出具有良好特征的临床级多功能人神经干细胞(hNSCs)。因此,将神经发生/神经胶质前体细胞移植到中枢神经系统中,以实现细胞替代或对损伤或疾病患者的神经保护,尚未得到广泛的测试和实施。

方法

在这里,我们建立了一种体外分离高度可扩增的人神经干细胞的方法,该方法基于其集落形态手动选择神经前体细胞(CoMo-NSC)。通过表达 NSC 标志物(流式细胞术、mRNA 测序)、缺乏多能标志物以及通过体内脊髓移植后在三种不同的动物模型(包括 i)免疫缺陷大鼠、ii)免疫抑制 ALS 大鼠(SOD1)或 iii)脊髓损伤免疫抑制小型猪)中的致瘤/分化特征来验证建立和广泛扩增的 CoMo-NSC 的纯度和 NSC 特性。

结果

体外分析表明,建立的 CoMo-NSC 持续表达 NSC 标志物(Sox1、Sox2、Nestin、CD24),缺乏多能标志物(Nanog),并且在超过 15 代的过程中保持稳定的核型。基因谱分析和组织学显示,在体内移植的 CoMo-NSC 在 2-6 个月内可分化为神经元、星形胶质细胞和少突胶质细胞,而不会形成肿瘤性衍生物或异常结构。此外,移植的 CoMo-NSC 在各种宿主环境中形成具有突触接触的神经元和神经胶质细胞,包括免疫缺陷大鼠、免疫抑制 ALS 大鼠(SOD1G93A)或脊髓损伤小型猪,表明这些细胞具有良好的安全性和分化特性。

结论

这些数据表明,手动选择的 CoMo-NSC 代表了一种安全且可扩增的 NSC 群体,可有效用于治疗各种神经退行性疾病的前瞻性人类临床细胞替代试验,包括 ALS、中风、脊髓创伤或脊髓缺血性损伤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4890/6417180/7bf68a5d8aa8/13287_2019_1163_Fig1_HTML.jpg

相似文献

1
A scalable solution for isolating human multipotent clinical-grade neural stem cells from ES precursors.
Stem Cell Res Ther. 2019 Mar 12;10(1):83. doi: 10.1186/s13287-019-1163-7.
6
Preparation of neural stem cells and progenitors: neuronal production and grafting applications.
Methods Mol Biol. 2013;1078:65-88. doi: 10.1007/978-1-62703-640-5_7.
8
Prolonged human neural stem cell maturation supports recovery in injured rodent CNS.
J Clin Invest. 2017 Sep 1;127(9):3287-3299. doi: 10.1172/JCI92955. Epub 2017 Aug 21.
9
Markers of pluripotency and differentiation in human neural precursor cells derived from embryonic stem cells and CNS tissue.
Cell Transplant. 2011;20(2):177-91. doi: 10.3727/096368910X527266. Epub 2010 Sep 27.
10
Efficient and rapid derivation of primitive neural stem cells and generation of brain subtype neurons from human pluripotent stem cells.
Stem Cells Transl Med. 2013 Nov;2(11):862-70. doi: 10.5966/sctm.2013-0080. Epub 2013 Oct 10.

引用本文的文献

1
How neural stem cell therapy promotes brain repair after stroke.
Stem Cell Reports. 2025 Jun 10;20(6):102507. doi: 10.1016/j.stemcr.2025.102507. Epub 2025 May 22.
2
Genomic tumor evolution dictates human medulloblastoma progression.
Neurooncol Adv. 2024 Oct 5;6(1):vdae172. doi: 10.1093/noajnl/vdae172. eCollection 2024 Jan-Dec.
4
Stem cell-based ischemic stroke therapy: Novel modifications and clinical challenges.
Asian J Pharm Sci. 2024 Feb;19(1):100867. doi: 10.1016/j.ajps.2023.100867. Epub 2023 Nov 10.
5
A model of human neural networks reveals NPTX2 pathology in ALS and FTLD.
Nature. 2024 Feb;626(8001):1073-1083. doi: 10.1038/s41586-024-07042-7. Epub 2024 Feb 14.
6
Routes and methods of neural stem cells injection in cerebral ischemia.
Ibrain. 2023 Aug 6;9(3):326-339. doi: 10.1002/ibra.12122. eCollection 2023 Fall.
8
Derivation of Sendai-Virus-Reprogrammed Human iPSCs-Neuronal Precursors: and Post-grafting Safety Characterization.
Cell Transplant. 2023 Jan-Dec;32:9636897231163232. doi: 10.1177/09636897231163232.
10
Effects of all-trans and 9-cis retinoic acid on differentiating human neural stem cells in vitro.
Toxicology. 2023 Mar 15;487:153461. doi: 10.1016/j.tox.2023.153461. Epub 2023 Feb 16.

本文引用的文献

1
Stem Cells and DNA Repair Capacity: Muse Stem Cells Are Among the Best Performers.
Adv Exp Med Biol. 2018;1103:103-113. doi: 10.1007/978-4-431-56847-6_5.
2
A First-in-Human, Phase I Study of Neural Stem Cell Transplantation for Chronic Spinal Cord Injury.
Cell Stem Cell. 2018 Jun 1;22(6):941-950.e6. doi: 10.1016/j.stem.2018.05.014.
3
Survival of syngeneic and allogeneic iPSC-derived neural precursors after spinal grafting in minipigs.
Sci Transl Med. 2018 May 9;10(440). doi: 10.1126/scitranslmed.aam6651.
4
Low immunogenicity of mouse induced pluripotent stem cell-derived neural stem/progenitor cells.
Sci Rep. 2017 Oct 11;7(1):12996. doi: 10.1038/s41598-017-13522-w.
5
MHC matching improves engraftment of iPSC-derived neurons in non-human primates.
Nat Commun. 2017 Aug 30;8(1):385. doi: 10.1038/s41467-017-00926-5.
6
Functional Stem Cell Integration into Neural Networks Assessed by Organotypic Slice Cultures.
Curr Protoc Stem Cell Biol. 2017 Aug 14;42:2D.13.1-2D.13.30. doi: 10.1002/cpsc.34.
7
Direct and indirect cost of managing alzheimer's disease and related dementias in the United States.
Expert Rev Pharmacoecon Outcomes Res. 2017 Apr;17(2):189-202. doi: 10.1080/14737167.2017.1313118.
8
Highly Efficient Neural Conversion of Human Pluripotent Stem Cells in Adherent and Animal-Free Conditions.
Stem Cells Transl Med. 2017 Apr;6(4):1217-1226. doi: 10.1002/sctm.16-0371. Epub 2017 Feb 18.
9
Whole-brain 3D mapping of human neural transplant innervation.
Nat Commun. 2017 Jan 19;8:14162. doi: 10.1038/ncomms14162.
10
Transplantation of spinal cord-derived neural stem cells for ALS: Analysis of phase 1 and 2 trials.
Neurology. 2016 Jul 26;87(4):392-400. doi: 10.1212/WNL.0000000000002889. Epub 2016 Jun 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验