Suppr超能文献

社区对 3 延迟模型干预的看法:赞比亚拯救母亲、赋予生命项目的定性评估。

Community Perspectives of a 3-Delays Model Intervention: A Qualitative Evaluation of Saving Mothers, Giving Life in Zambia.

机构信息

Department of Community and Family Medicine, School of Public Health, University of Zambia, Lusaka, Zambia.

Division of Global HIV and TB, U.S. Centers for Disease Control and Prevention, Lusaka, Zambia.

出版信息

Glob Health Sci Pract. 2019 Mar 13;7(Suppl 1):S139-S150. doi: 10.9745/GHSP-D-18-00287. Print 2019 Mar 11.

Abstract

BACKGROUND

Saving Mothers, Giving Life (SMGL), a health systems strengthening approach based on the 3-delays model, aimed to reduce maternal and perinatal mortality in 6 districts in Zambia between 2012 and 2017. By 2016, the maternal mortality ratio in SMGL-supported districts declined by 41% compared to its level at the beginning of SMGL-from 480 to 284 deaths per 100,000 live births. The 10.5% annual reduction between the baseline and 2016 was about 4.5 times higher than the annual reduction rate for sub-Saharan Africa and about 2.6 times higher than the annual reduction estimated for Zambia as a whole.

OBJECTIVES

While outcome measures demonstrate reductions in maternal and perinatal mortality, this qualitative endline evaluation assessed community perceptions of the SMGL intervention package, including (1) messaging about use of maternal health services, (2) access to maternal health services, and (3) quality improvement of maternal health services.

METHODS

We used purposive sampling to conduct semistructured in-depth interviews with women who delivered at home (n=20), women who delivered in health facilities (n=20), community leaders (n=8), clinicians (n=15), and public health stakeholders (n=15). We also conducted 12 focus group discussions with a total of 93 men and women from the community and Safe Motherhood Action Group members. Data were coded and analyzed using NVivo version 10.

RESULTS

Delay 1: Participants were receptive to SMGL's messages related to early antenatal care, health facility-based deliveries, and involving male partners in pregnancy and childbirth. However, top-down pressure to increase health facility deliveries led to unintended consequences, such as community-imposed penalty fees for home deliveries. Delay 2: Community members perceived some improvements, such as refurbished maternity waiting homes and dedicated maternity ambulances, but many still had difficulty reaching the health facilities in time to deliver. Delay 3: SMGL's clinician trainings were considered a strength, but the increased demand for health facility deliveries led to human resource challenges, which affected perceived quality of care.

CONCLUSION AND LESSONS LEARNED

While SMGL's health systems strengthening approach aimed to reduce challenges related to the 3 delays, participants still reported significant barriers accessing maternal and newborn health care. More research is needed to understand the necessary intervention package to affect system-wide change.

摘要

背景

拯救母亲,赋予生命(SMGL)是一种基于 3 个延误模型的强化卫生系统方法,旨在减少 2012 年至 2017 年赞比亚 6 个地区的孕产妇和围产期死亡。到 2016 年,SMGL 支持地区的孕产妇死亡率与 SMGL 开始时相比下降了 41%,从每 10 万例活产 480 例降至 284 例。2016 年基线年度减少 10.5%,是撒哈拉以南非洲年减少率的约 4.5 倍,是整个赞比亚年减少率的约 2.6 倍。

目的

尽管结果衡量标准表明孕产妇和围产期死亡率有所降低,但本项定性终线评估评估了社区对 SMGL 综合干预措施的看法,包括(1)有关使用孕产妇保健服务的信息,(2)获得孕产妇保健服务的机会,以及(3)孕产妇保健服务质量的提高。

方法

我们采用目的性抽样方法,对在家分娩的妇女(n=20)、在保健设施分娩的妇女(n=20)、社区领导(n=8)、临床医生(n=15)和公共卫生利益攸关方(n=15)进行半结构式深入访谈。我们还与社区和安全孕产行动小组成员进行了 12 次焦点小组讨论,共涉及 93 名男性和女性。使用 NVivo 版本 10 对数据进行编码和分析。

结果

延误 1:参与者对 SMGL 有关早期产前护理、在保健设施分娩以及让男性伴侣参与怀孕和分娩的信息持欢迎态度。但是,增加保健设施分娩的自上而下的压力带来了意外的后果,例如对在家分娩的社区强制罚款。延误 2:社区成员认为有些方面有所改善,例如翻修的产科候诊室和专用的产科救护车,但许多人仍然难以及时到达保健设施分娩。延误 3:SMGL 的临床医生培训被认为是一个优势,但对保健设施分娩需求的增加导致了人力资源方面的挑战,这影响了护理质量的感知。

结论和经验教训

虽然 SMGL 的强化卫生系统方法旨在减少与 3 个延误相关的挑战,但参与者仍报告说,在获得孕产妇和新生儿保健方面存在重大障碍。需要进一步研究以了解影响全系统变革所需的综合干预措施。

相似文献

4
Saving Mothers, Giving Life: It Takes a System to Save a Mother.拯救母亲,赋予生命:拯救母亲需要一个系统。
Glob Health Sci Pract. 2019 Mar 13;7(Suppl 1):S6-S26. doi: 10.9745/GHSP-D-18-00427. Print 2019 Mar 11.

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验