Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany, and.
Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany, and
J Neurosci. 2019 May 22;39(21):4077-4099. doi: 10.1523/JNEUROSCI.1801-18.2019. Epub 2019 Mar 13.
Phase locking of auditory-nerve-fiber (ANF) responses to the fine structure of acoustic stimuli is a hallmark of the auditory system's temporal precision and is important for many aspects of hearing. Period histograms from phase-locked ANF responses to low-frequency tones exhibit spike-rate and temporal asymmetries, but otherwise retain an approximately sinusoidal shape as stimulus level increases, even beyond the level at which the mean spike rate saturates. This is intriguing because apical cochlear mechanical vibrations show little compression, and mechanoelectrical transduction in the receptor cells is thought to obey a static sigmoidal nonlinearity, which might be expected to produce peak clipping at moderate and high stimulus levels. Here we analyze phase-locked responses of ANFs from cats of both sexes. We show that the lack of peak clipping is due neither to ANF refractoriness nor to spike-rate adaptation on time scales longer than the stimulus period. We demonstrate that the relationship between instantaneous pressure and instantaneous rate is well described by an exponential function whose slope decreases with increasing stimulus level. Relatively stereotyped harmonic distortions in the input to the exponential can account for the temporal asymmetry of the period histograms, including peak splitting. We show that the model accounts for published membrane-potential waveforms when assuming a power-of-three, but not a power-of-one, relationship to exocytosis. Finally, we demonstrate the relationship between the exponential transfer functions and the sigmoidal pseudotransducer functions obtained in the literature by plotting the maxima and minima of the voltage responses against the maxima and minima of the stimuli. Phase locking of auditory-nerve-fiber responses to the temporal fine structure of acoustic stimuli is important for many aspects of hearing, but the mechanisms underlying phase locking are not fully understood. Intriguingly, period histograms retain an approximately sinusoidal shape across sound levels, even when the mean rate has saturated. We find that neither refractoriness nor spike-rate adaptation is responsible for this behavior. Instead, the peripheral auditory system operates as though it contains an exponential transfer function whose slope changes with stimulus level. The underlying mechanism is distinct from the comparatively weak cochlear mechanical compression in the cochlear apex, and likely resides in the receptor cells.
听觉神经纤维(ANF)对声音刺激精细结构的相位锁定是听觉系统时间精度的标志,对听觉的许多方面都很重要。相位锁定的 ANF 对低频音调的反应的周期直方图表现出尖峰率和时间不对称性,但在刺激水平增加时,除了平均尖峰率饱和的水平之外,仍保持近似正弦形状。这很有趣,因为耳蜗顶端的机械振动几乎没有压缩,并且受体细胞中的机电转换被认为遵循静态的 sigmoidal 非线性,这可能导致在中等和高刺激水平下出现峰值削波。在这里,我们分析了来自雌雄猫的 ANF 的相位锁定反应。我们表明,缺乏峰值削波既不是由于 ANF 的不应期,也不是由于在刺激周期以上的时间尺度上的尖峰率适应。我们证明了瞬时压力和瞬时率之间的关系可以很好地用指数函数来描述,其斜率随着刺激水平的增加而减小。在输入到指数的相对定型的谐波失真可以解释周期直方图的时间不对称性,包括峰分裂。我们表明,当假设与胞吐作用呈三次方关系而不是一次方关系时,该模型可以解释文献中报道的膜电位波形。最后,我们通过绘制电压响应的最大值和最小值与刺激的最大值和最小值之间的关系,展示了指数传递函数与文献中获得的 sigmoidal 伪转换器函数之间的关系。听觉神经纤维对声音刺激时间精细结构的相位锁定对听觉的许多方面都很重要,但其锁定机制尚不完全清楚。有趣的是,即使平均率已经饱和,周期直方图在整个声级范围内仍保持近似正弦形状。我们发现,不应期或尖峰率适应都不是导致这种行为的原因。相反,外周听觉系统的工作方式好像它包含一个指数传递函数,其斜率随刺激水平而变化。这种机制与耳蜗顶端相对较弱的耳蜗机械压缩不同,可能存在于受体细胞中。