Yin Siqi, Zhang Zhiqiang, Yu Jiamin, Zhao Zilong, Liu Min, Bao Lei, Jia Zheng, Cui Jianzhong, Wang Ping
Key Lab of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, 314 Mailbox, Shenyang, 110819, China.
College of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China.
Sci Rep. 2019 Mar 13;9(1):4365. doi: 10.1038/s41598-018-38420-7.
Mg-7Zn-5Gd-0.6Zr (wt%) alloy strengthened with quasicrystal phase (I-MgZnGd phase) is prepared through hot extrusion and subsequent heat treatments. The low temperature (range from 25 °C to 250 °C) superplastic deformation behavior of the as-extruded, aging treated (T5) and solution and aging treated (T6) alloys are investigated. The results reveal that a superior superplastic elongation of 863% is obtained at 250 °C and strain rate of 1.67 × 10 s and the elongation of this alloy increases with the increasing tensile temperature. Detailed microstructural analyses show that I-MgZnGd phase and W-MgGdZn phase are crushed into small particles during extrusion. A high density of nanoscale I-phase precipitates after T5 treatment. Dynamic recrystallization occurs in as-extruded Mg-7Zn-5Gd-0.6Zr alloy. The T5-treated Mg-7Zn-5Gd-0.6Zr alloy shows a relatively weak basal texture intensity, a large number fraction of high angle boundaries and a very finer grain structure (3.01 μm). During superplastic deformation, the nanoscale I-phase is slightly elongated and the microstructure is still equiaxed grains. The superplastic mechanism of the alloy is grain boundary sliding (GBS) accommodated by dislocation movement and static recrystallization. The cavity nucleation at the nanoscale I-phase/α-Mg matrix boundaries or grain boundaries and the cavity stringer formation leads to final fracture.
通过热挤压及后续热处理制备了用准晶相(I-MgZnGd相)强化的Mg-7Zn-5Gd-0.6Zr(重量百分比)合金。研究了挤压态、时效处理(T5)和固溶时效处理(T6)合金在低温(25℃至250℃范围)下的超塑性变形行为。结果表明,在250℃和应变速率1.67×10⁻⁴s⁻¹时获得了863%的优异超塑性伸长率,且该合金的伸长率随拉伸温度的升高而增加。详细的微观结构分析表明,I-MgZnGd相和W-MgGdZn相在挤压过程中被破碎成小颗粒。T5处理后有高密度的纳米级I相析出。挤压态Mg-7Zn-5Gd-0.6Zr合金中发生了动态再结晶。T5处理的Mg-7Zn-5Gd-0.6Zr合金显示出相对较弱的基面织构强度、大量的高角度晶界分数和非常细小的晶粒结构(3.01μm)。在超塑性变形过程中,纳米级I相略有拉长,微观结构仍为等轴晶粒。该合金的超塑性机制是由位错运动和静态再结晶协调的晶界滑动(GBS)。纳米级I相/α-Mg基体边界或晶界处的空洞形核以及空洞串的形成导致最终断裂。