Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden.
Department of Medical Biochemistry & Biophysics, Karolinska Institutet, 171 77, Stockholm, Sweden.
Sci Rep. 2019 Mar 13;9(1):4366. doi: 10.1038/s41598-019-40579-6.
Systems biology is increasingly being applied in nanosafety research for observing and predicting the biological perturbations inflicted by exposure to nanoparticles (NPs). In the present study, we used a combined transcriptomics and proteomics approach to assess the responses of human monocytic cells to Au-NPs of two different sizes with three different surface functional groups, i.e., alkyl ammonium bromide, alkyl sodium carboxylate, or poly(ethylene glycol) (PEG)-terminated Au-NPs. Cytotoxicity screening using THP-1 cells revealed a pronounced cytotoxicity for the ammonium-terminated Au-NPs, while no cell death was seen after exposure to the carboxylated or PEG-modified Au-NPs. Moreover, Au-NR3+ NPs, but not the Au-COOH NPs, were found to trigger dose-dependent lethality in vivo in the model organism, Caenorhabditis elegans. RNA sequencing combined with mass spectrometry-based proteomics predicted that the ammonium-modified Au-NPs elicited mitochondrial dysfunction. The latter results were validated by using an array of assays to monitor mitochondrial function. Au-NR3+ NPs were localized in mitochondria of THP-1 cells. Moreover, the cationic Au-NPs triggered autophagy in macrophage-like RFP-GFP-LC3 reporter cells, and cell death was aggravated upon inhibition of autophagy. Taken together, these studies have disclosed mitochondria-dependent effects of cationic Au-NPs resulting in the rapid demise of the cells.
系统生物学越来越多地应用于纳米安全研究中,用于观察和预测暴露于纳米颗粒(NPs)时造成的生物干扰。在本研究中,我们使用联合转录组学和蛋白质组学方法来评估人类单核细胞对两种不同大小的具有三种不同表面官能团的金纳米颗粒(Au-NPs)的反应,即烷基铵溴化物、烷基钠羧酸盐或聚(乙二醇)(PEG)-末端 Au-NPs。使用 THP-1 细胞进行的细胞毒性筛选显示,铵封端的 Au-NPs 表现出明显的细胞毒性,而暴露于羧基化或 PEG 修饰的 Au-NPs 后则没有细胞死亡。此外,研究发现,Au-NR3+ NPs 而不是 Au-COOH NPs 会在模式生物秀丽隐杆线虫中引发剂量依赖性致死性。RNA 测序与基于质谱的蛋白质组学相结合预测,铵修饰的 Au-NPs 会引起线粒体功能障碍。通过一系列监测线粒体功能的检测方法验证了这些结果。Au-NR3+ NPs 定位于 THP-1 细胞的线粒体中。此外,阳离子 Au-NPs 会在巨噬细胞样 RFP-GFP-LC3 报告细胞中引发自噬,并且自噬抑制会加剧细胞死亡。总之,这些研究揭示了阳离子 Au-NPs 导致线粒体依赖性效应,从而导致细胞迅速死亡。