Kawale Durgesh, Jayaraman Jishnu, Boukany Pouyan E
Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
Biomicrofluidics. 2019 Feb 11;13(1):014111. doi: 10.1063/1.5050201. eCollection 2019 Jan.
Fluidic rectification refers to anisotropic flow resistance upon changing the flow direction. Polymeric solutions, in contrast to Newtonian fluids, can exhibit an anisotropic flow resistance in microfluidic devices by tuning the channel shape at low Reynolds number. Such a concept has not been investigated in an anisotropic porous medium. We have developed a fluidic rectifier based on an anisotropic porous medium consisting of a periodic array of triangular pillars that can operate at a low Reynolds number. Rectification is achieved, when the type of high Weissenberg number elastic instabilities changes with the flow direction. The flow resistance differs across the two directions of the anisotropic porous medium geometry. We have identified the type of elastic instabilities that appear in both forward and backward directions. Particularly, we found a qualitative relation between the dead-zone instability and the onset of fluidic rectification.
流体整流是指在改变流动方向时出现的各向异性流动阻力。与牛顿流体不同,聚合物溶液在微流体装置中通过在低雷诺数下调整通道形状可表现出各向异性流动阻力。这样的概念尚未在各向异性多孔介质中得到研究。我们基于由三角形柱体的周期性阵列组成的各向异性多孔介质开发了一种流体整流器,其可在低雷诺数下运行。当高魏森贝格数弹性不稳定性的类型随流动方向变化时,即可实现整流。各向异性多孔介质几何结构的两个方向上的流动阻力有所不同。我们已经确定了在向前和向后两个方向上出现的弹性不稳定性的类型。特别地,我们发现了死区不稳定性与流体整流起始之间的定性关系。