Suppr超能文献

模型多孔介质中剪切变稀聚合物溶液的弹性不稳定性导致的额外耗散和流动均匀化。

Extra dissipation and flow uniformization due to elastic instabilities of shear-thinning polymer solutions in model porous media.

作者信息

Machado Anaïs, Bodiguel Hugues, Beaumont Julien, Clisson Gérald, Colin Annie

机构信息

Univ. Bordeaux, CNRS , Solvay, Lab. LOF UMR5258, Pessac, France.

Univ. Grenoble Alpes, CNRS , Lab. LRP UMR5520, F-38000 Grenoble, France.

出版信息

Biomicrofluidics. 2016 Jul 5;10(4):043507. doi: 10.1063/1.4954813. eCollection 2016 Jul.

Abstract

We study flows of hydrolized polyacrylamide solutions in two dimensional porous media made using microfluidics, for which elastic effects are dominant. We focus on semi-dilute solutions (0.1%-0.4%) which exhibit a strong shear thinning behavior. We systematically measure the pressure drop and find that the effective permeability is dramatically higher than predicted when the Weissenberg number is greater than about 10. Observations of the streamlines of the flow reveal that this effect coincides with the onset of elastic instabilities. Moreover, and importantly for applications, we show using local measurements that the mean flow is modified: it appears to be more uniform at high Weissenberg number than for Newtonian fluids. These observations are compared and discussed using pore network simulations, which account for the effect of disorder and shear thinning on the flow properties.

摘要

我们研究了使用微流体技术制备的二维多孔介质中水解聚丙烯酰胺溶液的流动情况,其中弹性效应占主导。我们关注半稀溶液(0.1%-0.4%),其表现出强烈的剪切变稀行为。我们系统地测量了压降,发现当魏森贝格数大于约10时,有效渗透率显著高于预测值。对流动流线的观察表明,这种效应与弹性不稳定性的开始相吻合。此外,对于应用而言重要的是,我们通过局部测量表明平均流动发生了改变:在高魏森贝格数下,它似乎比牛顿流体更均匀。使用孔隙网络模拟对这些观察结果进行了比较和讨论,该模拟考虑了无序和剪切变稀对流动特性的影响。

相似文献

1
Extra dissipation and flow uniformization due to elastic instabilities of shear-thinning polymer solutions in model porous media.
Biomicrofluidics. 2016 Jul 5;10(4):043507. doi: 10.1063/1.4954813. eCollection 2016 Jul.
2
Pore-Scale Flow Characterization of Polymer Solutions in Microfluidic Porous Media.
Small. 2020 Mar;16(9):e1903944. doi: 10.1002/smll.201903944. Epub 2019 Oct 10.
4
5
Elastic instabilities in the electroosmotic flow of non-Newtonian fluids through T-shaped microchannels.
Electrophoresis. 2020 Apr;41(7-8):588-597. doi: 10.1002/elps.201900331. Epub 2019 Dec 11.
6
Pinch-off dynamics and dripping-onto-substrate (DoS) rheometry of complex fluids.
Lab Chip. 2017 Jan 31;17(3):460-473. doi: 10.1039/c6lc01155a.
8
Fluid Rheological Effects on the Flow of Polymer Solutions in a Contraction-Expansion Microchannel.
Micromachines (Basel). 2020 Mar 8;11(3):278. doi: 10.3390/mi11030278.
9
Qualification of New Methods for Measuring In Situ Rheology of Non-Newtonian Fluids in Porous Media.
Polymers (Basel). 2020 Feb 14;12(2):452. doi: 10.3390/polym12020452.

引用本文的文献

1
Geometry-Dependent Elastic Flow Dynamics in Micropillar Arrays.
Micromachines (Basel). 2024 Feb 13;15(2):268. doi: 10.3390/mi15020268.
2
Elastic turbulence generates anomalous flow resistance in porous media.
Sci Adv. 2021 Nov 5;7(45):eabj2619. doi: 10.1126/sciadv.abj2619.
3
Microfluidic rectifier for polymer solutions flowing through porous media.
Biomicrofluidics. 2019 Feb 11;13(1):014111. doi: 10.1063/1.5050201. eCollection 2019 Jan.
4
Preface to Special Topic: Invited Articles on Microfluidic Rheology.
Biomicrofluidics. 2016 Aug 26;10(4):043301. doi: 10.1063/1.4961681. eCollection 2016 Jul.

本文引用的文献

1
Viscoelastic polymer flows and elastic turbulence in three-dimensional porous structures.
Soft Matter. 2016 Jan 14;12(2):460-8. doi: 10.1039/c5sm01749a. Epub 2015 Oct 19.
3
Mechanism of anomalously increased oil displacement with aqueous viscoelastic polymer solutions.
Soft Matter. 2015 May 14;11(18):3536-41. doi: 10.1039/c5sm00064e.
4
Flow enhancement due to elastic turbulence in channel flows of shear thinning fluids.
Phys Rev Lett. 2015 Jan 16;114(2):028302. doi: 10.1103/PhysRevLett.114.028302. Epub 2015 Jan 15.
5
Transition to turbulence and mixing in a viscoelastic fluid flowing inside a channel with a periodic array of cylindrical obstacles.
Phys Rev Lett. 2013 Apr 26;110(17):174501. doi: 10.1103/PhysRevLett.110.174501. Epub 2013 Apr 22.
6
Submicron flow of polymer solutions: slippage reduction due to confinement.
Phys Rev Lett. 2013 Mar 8;110(10):108304. doi: 10.1103/PhysRevLett.110.108304. Epub 2013 Mar 6.
7
Drainage in two-dimensional porous media: from capillary fingering to viscous flow.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Oct;82(4 Pt 2):046315. doi: 10.1103/PhysRevE.82.046315. Epub 2010 Oct 28.
8
Experimental and modeling study of Newtonian and non-Newtonian fluid flow in pore network micromodels.
J Colloid Interface Sci. 2006 Mar 15;295(2):542-50. doi: 10.1016/j.jcis.2005.09.012. Epub 2005 Oct 10.
9
Predictive network modeling of single-phase non-Newtonian flow in porous media.
J Colloid Interface Sci. 2003 Aug 1;264(1):256-65. doi: 10.1016/s0021-9797(03)00310-2.
10
Elastic turbulence in a polymer solution flow.
Nature. 2000 May 4;405(6782):53-5. doi: 10.1038/35011019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验