Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, The Netherlands.
Soft Matter. 2017 Dec 13;13(48):9138-9146. doi: 10.1039/c7sm01818e.
We investigate creeping viscoelastic fluid flow through two-dimensional porous media consisting of random arrangements of monodisperse and bidisperse cylinders, using our finite volume-immersed boundary method introduced in S. De, et al., J. Non-Newtonian Fluid Mech., 2016, 232, 67-76. The viscoelastic fluid is modeled with a FENE-P model. The simulations show an increased flow resistance with increase in flow rate, even though the bulk response of the fluid to shear flow is shear thinning. We show that if the square root of the permeability is chosen as the characteristic length scale in the determination of the dimensionless Deborah number (De), then all flow resistance curves collapse to a single master curve, irrespective of the pore geometry. Our study reveals how viscoelastic stresses and flow topologies (rotation, shear and extension) are distributed through the porous media, and how they evolve with increasing De. We correlate the local viscoelastic first normal stress differences with the local flow topology and show that the largest normal stress differences are located in shear flow dominated regions and not in extensional flow dominated regions at higher viscoelasticity. The study shows that normal stress differences in shear flow regions may play a crucial role in the increase of flow resistance for viscoelastic flow through such porous media.
我们使用 S. De 等人在 2016 年的 J. Non-Newtonian Fluid Mech.,232,67-76 中介绍的有限体积浸入边界方法,研究了由单分散和双分散圆柱随机排列组成的二维多孔介质中的粘性弹性流体流动。粘性弹性流体采用 FENE-P 模型进行建模。模拟结果表明,尽管流体对剪切流的整体响应是剪切变稀,但随着流速的增加,流动阻力会增加。我们表明,如果在确定无量纲 Deborah 数 (De) 时选择渗透率的平方根作为特征长度尺度,则所有流动阻力曲线都会收敛到单个主曲线,而与孔几何形状无关。我们的研究揭示了粘弹性应力和流动拓扑(旋转、剪切和拉伸)如何在多孔介质中分布,以及它们如何随 De 的增加而演变。我们将局部粘弹性第一法向应力差与局部流动拓扑相关联,并表明在更高的粘弹性时,最大的法向应力差位于剪切流主导区域,而不是在拉伸流主导区域。该研究表明,剪切流区域的法向应力差可能在粘性弹性流体通过这种多孔介质的流动阻力增加中起关键作用。