Kunti Golak, Dhar Jayabrata, Bhattacharya Anandaroop, Chakraborty Suman
Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India.
CNRS, Universite de Rennes 1, Geosciences Rennes UMR6118, Rennes, France.
Biomicrofluidics. 2019 Feb 22;13(1):014113. doi: 10.1063/1.5082978. eCollection 2019 Jan.
We develop an electrokinetic technique that continuously manipulates colloidal particles to concentrate into patterned particulate groups in an energy efficient way, by exclusive harnessing of the intrinsic Joule heating effects. Our technique exploits the alternating current electrothermal flow phenomenon which is generated due to the interaction between non-uniform electric and thermal fields. Highly non-uniform electric field generates sharp temperature gradients by generating spatially-varying Joule heat that varies along the radial direction from a concentrated point hotspot. Sharp temperature gradients induce a local variation in electric properties which, in turn, generate a strong electrothermal vortex. The imposed fluid flow brings the colloidal particles at the centre of the hotspot and enables particle aggregation. Furthermore, maneuvering structures of the Joule heating spots, different patterns of particle clustering may be formed in a low power budget, thus opening up a new realm of on-chip particle manipulation process without necessitating a highly focused laser beam which is much complicated and demands higher power budget. This technique can find its use in Lab-on-a-chip devices to manipulate particle groups, including biological cells.
我们开发了一种电动技术,通过专门利用内在的焦耳热效应,以节能的方式连续操纵胶体颗粒,使其浓缩成图案化的颗粒群。我们的技术利用了由于非均匀电场和热场之间的相互作用而产生的交流电热流现象。高度非均匀的电场通过产生沿径向从集中的点热点变化的空间变化焦耳热来产生急剧的温度梯度。急剧的温度梯度会引起电学性质的局部变化,进而产生强烈的电热涡旋。施加的流体流动将胶体颗粒带到热点中心并使颗粒聚集。此外,通过操纵焦耳热点的结构,可以在低功率预算下形成不同的颗粒聚集模式,从而开辟了一个无需高聚焦激光束的片上颗粒操纵过程的新领域,而高聚焦激光束非常复杂且需要更高的功率预算。这项技术可用于片上实验室设备中操纵颗粒群,包括生物细胞。