Suppr超能文献

微流控芯片上的焦耳热诱导粒子操控

Joule heating-induced particle manipulation on a microfluidic chip.

作者信息

Kunti Golak, Dhar Jayabrata, Bhattacharya Anandaroop, Chakraborty Suman

机构信息

Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India.

CNRS, Universite de Rennes 1, Geosciences Rennes UMR6118, Rennes, France.

出版信息

Biomicrofluidics. 2019 Feb 22;13(1):014113. doi: 10.1063/1.5082978. eCollection 2019 Jan.

Abstract

We develop an electrokinetic technique that continuously manipulates colloidal particles to concentrate into patterned particulate groups in an energy efficient way, by exclusive harnessing of the intrinsic Joule heating effects. Our technique exploits the alternating current electrothermal flow phenomenon which is generated due to the interaction between non-uniform electric and thermal fields. Highly non-uniform electric field generates sharp temperature gradients by generating spatially-varying Joule heat that varies along the radial direction from a concentrated point hotspot. Sharp temperature gradients induce a local variation in electric properties which, in turn, generate a strong electrothermal vortex. The imposed fluid flow brings the colloidal particles at the centre of the hotspot and enables particle aggregation. Furthermore, maneuvering structures of the Joule heating spots, different patterns of particle clustering may be formed in a low power budget, thus opening up a new realm of on-chip particle manipulation process without necessitating a highly focused laser beam which is much complicated and demands higher power budget. This technique can find its use in Lab-on-a-chip devices to manipulate particle groups, including biological cells.

摘要

我们开发了一种电动技术,通过专门利用内在的焦耳热效应,以节能的方式连续操纵胶体颗粒,使其浓缩成图案化的颗粒群。我们的技术利用了由于非均匀电场和热场之间的相互作用而产生的交流电热流现象。高度非均匀的电场通过产生沿径向从集中的点热点变化的空间变化焦耳热来产生急剧的温度梯度。急剧的温度梯度会引起电学性质的局部变化,进而产生强烈的电热涡旋。施加的流体流动将胶体颗粒带到热点中心并使颗粒聚集。此外,通过操纵焦耳热点的结构,可以在低功率预算下形成不同的颗粒聚集模式,从而开辟了一个无需高聚焦激光束的片上颗粒操纵过程的新领域,而高聚焦激光束非常复杂且需要更高的功率预算。这项技术可用于片上实验室设备中操纵颗粒群,包括生物细胞。

相似文献

1
Joule heating-induced particle manipulation on a microfluidic chip.
Biomicrofluidics. 2019 Feb 22;13(1):014113. doi: 10.1063/1.5082978. eCollection 2019 Jan.
2
Review of nonlinear electrokinetic flows in insulator-based dielectrophoresis: From induced charge to Joule heating effects.
Electrophoresis. 2022 Jan;43(1-2):167-189. doi: 10.1002/elps.202100090. Epub 2021 May 24.
3
Joule heating-enabled electrothermal enrichment of nanoparticles in insulator-based dielectrophoretic microdevices.
Electrophoresis. 2021 Mar;42(5):626-634. doi: 10.1002/elps.202000192. Epub 2020 Sep 28.
4
Electrothermal enrichment of submicron particles in an insulator-based dielectrophoretic microdevice.
Electrophoresis. 2018 Mar;39(5-6):887-896. doi: 10.1002/elps.201700342. Epub 2017 Nov 14.
5
Joule heating in electrokinetic flow.
Electrophoresis. 2008 Jan;29(1):33-43. doi: 10.1002/elps.200700302.
6
Analytical study of Joule heating effects on electrokinetic transportation in capillary electrophoresis.
J Chromatogr A. 2005 Feb 4;1064(2):227-37. doi: 10.1016/j.chroma.2004.12.033.
7
Joule heating effects on electrokinetic flows with conductivity gradients.
Electrophoresis. 2021 Apr;42(7-8):967-974. doi: 10.1002/elps.202000264. Epub 2020 Dec 16.
8
Joule heating effects on reservoir-based dielectrophoresis.
Electrophoresis. 2014 Mar;35(5):721-7. doi: 10.1002/elps.201300343. Epub 2013 Dec 2.
9
Electrothermal pumping with interdigitated electrodes and resistive heaters.
Electrophoresis. 2015 Aug;36(15):1681-9. doi: 10.1002/elps.201500112. Epub 2015 Jul 7.
10
Joule heating effects on electroosmotic entry flow.
Electrophoresis. 2017 Mar;38(5):572-579. doi: 10.1002/elps.201600296. Epub 2016 Oct 5.

引用本文的文献

2
On-chip dielectrophoretic device for cancer cell manipulation: A numerical and artificial neural network study.
Biomicrofluidics. 2023 Mar 6;17(2):024102. doi: 10.1063/5.0131806. eCollection 2023 Mar.
3
Recent advances and challenges in temperature monitoring and control in microfluidic devices.
Electrophoresis. 2023 Jan;44(1-2):268-297. doi: 10.1002/elps.202200162. Epub 2022 Oct 25.

本文引用的文献

1
Formation of Blood Droplets: Influence of the Plasma Proteins.
ACS Omega. 2018 Sep 30;3(9):10967-10973. doi: 10.1021/acsomega.8b01279. Epub 2018 Sep 11.
2
Electrokinetics with blood.
Electrophoresis. 2019 Jan;40(1):180-189. doi: 10.1002/elps.201800353. Epub 2018 Sep 30.
3
Electrothermal enrichment of submicron particles in an insulator-based dielectrophoretic microdevice.
Electrophoresis. 2018 Mar;39(5-6):887-896. doi: 10.1002/elps.201700342. Epub 2017 Nov 14.
4
Assembly of ordered colloidal aggregrates by electric-field-induced fluid flow.
Nature. 1997 Mar 6;386(6620):57-59. doi: 10.1038/386057a0.
6
Particle concentrating and sorting under a rotating electric field by direct optical-liquid heating in a microfluidics chip.
Biomicrofluidics. 2017 May 3;11(3):034102. doi: 10.1063/1.4982946. eCollection 2017 May.
7
Rapid mixing with high-throughput in a semi-active semi-passive micromixer.
Electrophoresis. 2017 May;38(9-10):1310-1317. doi: 10.1002/elps.201600393. Epub 2017 Mar 29.
8
In-plane microvortices micromixer-based AC electrothermal for testing drug induced death of tumor cells.
Biomicrofluidics. 2016 Nov 8;10(6):064102. doi: 10.1063/1.4967455. eCollection 2016 Nov.
9
Joule heating effects on electroosmotic entry flow.
Electrophoresis. 2017 Mar;38(5):572-579. doi: 10.1002/elps.201600296. Epub 2016 Oct 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验