Suppr超能文献

平滑肌细胞层与内皮细胞层的正交共培养以构建类脉管系统。

Orthogonal co-cultivation of smooth muscle cell and endothelial cell layers to construct -like vasculature.

作者信息

Choi Jong Seob, Seo Tae Seok

机构信息

Department of Bioengineering, University of Washington, Seattle, Washington, DC 98195, USA.

Department of Chemical Engineering, College of Engineering, Kyung Hee University, 1 Seochon-dong, Giheung-gu, Yongin-si, Gyeonggi-do 17104, South Korea.

出版信息

Biomicrofluidics. 2019 Feb 26;13(1):014115. doi: 10.1063/1.5068689. eCollection 2019 Jan.

Abstract

Development of a three-dimensional (3D) vascular co-cultivation system is one of the major challenges to provide an advanced analytical platform for studying blood vessel related diseases. To date, however, the -like vessel system has not been fully realized due to the difficulty of co-cultivation of the cells with orthogonal alignment. In this study, we report the utilization of microfabrication technology to construct biomimetic 3D co-cultured vasculature. First, microwrinkle patterns whose direction was perpendicular to the axis of a circular microfluidic channel were fabricated, and vascular smooth muscle cells (VSMCs) were cultured inside the microchannel, leading to an -like circumferential VSMC layer. Then, human umbilical vein endothelial cells (HUVECs) were co-cultured on the circumferentially aligned VSMC, and the success of double layer formation of HUVEC-VSMC in the circular microchannel could be monitored. After HUVEC cultivation, we applied shear flow in order to induce the orientation of HUVEC parallel to the axis, and the analysis of orientation angle and spreading area of HUVECs indicated that they were changed by shear stress to be aligned to the direction of flow. Thus, the HUVEC and VSMC layer could be aligned with a distinct direction. The expression level of VE-Cadherin located at the boundary of HUVECs implies -like vascular behavior. The proposed microfluidic vascular assay platform would be valuable for studying vascular diseases with high reliability due to -likeness.

摘要

开发三维(3D)血管共培养系统是为研究血管相关疾病提供先进分析平台的主要挑战之一。然而,迄今为止,由于难以将细胞进行正交排列共培养,类血管系统尚未完全实现。在本研究中,我们报告了利用微加工技术构建仿生3D共培养脉管系统。首先,制作方向垂直于圆形微流控通道轴线的微皱纹图案,并在微通道内培养血管平滑肌细胞(VSMC),从而形成类圆周VSMC层。然后,将人脐静脉内皮细胞(HUVEC)与圆周排列的VSMC共培养,并监测圆形微通道中HUVEC-VSMC双层形成的成功情况。在HUVEC培养后,我们施加剪切流以诱导HUVEC平行于轴线方向排列,对HUVEC取向角和铺展面积的分析表明,它们会因剪切应力而改变,从而与流动方向对齐。因此,HUVEC和VSMC层可以沿不同方向排列。位于HUVEC边界的VE-钙黏蛋白的表达水平暗示了类血管行为。由于具有类血管特性,所提出的微流控血管检测平台对于可靠地研究血管疾病将具有重要价值。

相似文献

1
Orthogonal co-cultivation of smooth muscle cell and endothelial cell layers to construct -like vasculature.
Biomicrofluidics. 2019 Feb 26;13(1):014115. doi: 10.1063/1.5068689. eCollection 2019 Jan.
2
Circumferential alignment of vascular smooth muscle cells in a circular microfluidic channel.
Biomaterials. 2014 Jan;35(1):63-70. doi: 10.1016/j.biomaterials.2013.09.106. Epub 2013 Oct 10.
4
Ang1/Tie2/VE-Cadherin Signaling Regulates DPSCs in Vascular Maturation.
J Dent Res. 2024 Jan;103(1):101-110. doi: 10.1177/00220345231210227. Epub 2023 Dec 6.
6
[Effect of fibroblasts on promoting the sprout and migration of endothelial cells in three-dimensional pre-vascularized microstructures].
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2022 Jul 15;36(7):881-888. doi: 10.7507/1002-1892.202203028.
7
Bioprinted 3D vascularized tissue model for drug toxicity analysis.
Biomicrofluidics. 2017 Aug 1;11(4):044109. doi: 10.1063/1.4994708. eCollection 2017 Jul.

引用本文的文献

2
Transcriptional drifts associated with environmental changes in endothelial cells.
Elife. 2023 Mar 27;12:e81370. doi: 10.7554/eLife.81370.
3
Recent developments in organ-on-a-chip technology for cardiovascular disease research.
Anal Bioanal Chem. 2023 Jul;415(18):3911-3925. doi: 10.1007/s00216-023-04596-9. Epub 2023 Mar 3.
4
A biomimetic orthogonal-bilayer tubular scaffold for the co-culture of endothelial cells and smooth muscle cells.
RSC Adv. 2021 Sep 27;11(50):31783-31790. doi: 10.1039/d1ra04472a. eCollection 2021 Sep 21.
7
Bioscaffolds embedded with regulatory modules for cell growth and tissue formation: A review.
Bioact Mater. 2020 Nov 9;6(5):1283-1307. doi: 10.1016/j.bioactmat.2020.10.014. eCollection 2021 May.

本文引用的文献

2
Smooth muscle architecture within cell-dense vascular tissues influences functional contractility.
Integr Biol (Camb). 2014 Dec;6(12):1201-10. doi: 10.1039/c4ib00193a. Epub 2014 Nov 3.
4
The contractile strength of vascular smooth muscle myocytes is shape dependent.
Integr Biol (Camb). 2014 Feb;6(2):152-63. doi: 10.1039/c3ib40230d.
5
Circumferential alignment of vascular smooth muscle cells in a circular microfluidic channel.
Biomaterials. 2014 Jan;35(1):63-70. doi: 10.1016/j.biomaterials.2013.09.106. Epub 2013 Oct 10.
6
Formation of microvascular networks in vitro.
Nat Protoc. 2013 Sep;8(9):1820-36. doi: 10.1038/nprot.2013.110. Epub 2013 Aug 29.
7
Tissue engineering: Blood vessels on a chip.
Nature. 2012 Aug 23;488(7412):465-6. doi: 10.1038/488465a.
8
Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function.
Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13515-20. doi: 10.1073/pnas.1210182109. Epub 2012 Aug 6.
9
In vitro microvessels for the study of angiogenesis and thrombosis.
Proc Natl Acad Sci U S A. 2012 Jun 12;109(24):9342-7. doi: 10.1073/pnas.1201240109. Epub 2012 May 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验