Laboratoire de Biologie du Développement, Sorbonne Université, CNRS, F-75005, Paris, France.
Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université d'Evry, Université Paris-Diderot, Université Paris-Sud, Sorbonne Paris-Cité, Saclay Plant Sciences, Orsay, France.
Plant J. 2019 Jul;99(1):163-175. doi: 10.1111/tpj.14311. Epub 2019 Apr 11.
Regulation of seed germination by dormancy relies on a complex network of transcriptional and post-transcriptional modifications during seed imbibition that controls seed adaptive responses to environmental cues. High-throughput technologies have brought significant progress in the understanding of this phenomenon and have led to identify major regulators of seed germination, mostly by studying the behaviour of highly differentially expressed genes. However, the actual models of transcriptome analysis cannot catch additive effects of small variations of gene expression in individual signalling or metabolic pathways, which are also likely to control germination. Therefore, the comprehension of the molecular mechanism regulating germination is still incomplete and to gain knowledge about this process we have developed a pathway-based analysis of transcriptomic Arabidopsis datasets, to identify regulatory actors of seed germination. The method allowed quantifying the level of deregulation of a wide range of pathways in dormant versus non-dormant seeds. Clustering pathway deregulation scores of germinating and dormant seed samples permitted the identification of mechanisms involved in seed germination such as RNA transport or vitamin B6 metabolism, for example. Using this method, which was validated by metabolomics analysis, we also demonstrated that Col and Cvi seeds follow different metabolic routes for completing germination, demonstrating the genetic plasticity of this process. We finally provided an extensive basis of analysed transcriptomic datasets that will allow further identification of mechanisms controlling seed germination.
种子休眠通过调控种子在吸胀过程中的转录和转录后修饰,来控制种子对环境信号的适应性反应,从而实现种子的萌发调控。高通量技术的发展极大地推动了我们对这一现象的理解,并有助于鉴定主要的种子萌发调控因子,主要是通过研究高度差异表达基因的行为来实现。然而,实际的转录组分析模型无法捕捉到单个信号或代谢途径中基因表达微小变化的累加效应,这些变化也可能控制着种子的萌发。因此,对调控种子萌发的分子机制的理解仍然不完整。为了深入了解这一过程,我们开发了一种基于途径的拟南芥转录组数据集分析方法,以鉴定调控种子萌发的调控因子。该方法能够定量分析休眠和非休眠种子中广泛途径的调控失调水平。对萌发和休眠种子样本的途径调控失调评分进行聚类,有助于鉴定与种子萌发相关的机制,例如 RNA 运输或维生素 B6 代谢等。通过该方法(该方法已通过代谢组学分析进行验证),我们还证明了 Col 和 Cvi 种子在完成萌发的过程中遵循不同的代谢途径,这表明了这一过程的遗传可塑性。我们最终提供了广泛的分析转录组数据集基础,这将有助于进一步鉴定控制种子萌发的机制。