Suppr超能文献

休眠种子和后熟种子吸胀过程中的差异表达基因——一种反向遗传学方法

Differentially expressed genes during the imbibition of dormant and after-ripened seeds - a reverse genetics approach.

作者信息

Yazdanpanah Farzaneh, Hanson Johannes, Hilhorst Henk W M, Bentsink Leónie

机构信息

Wageningen Seed Laboratory, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands.

Umeå Plant Science Center, Department of Plant Physiology, Umeå University, SE-901 87, Umeå, Sweden.

出版信息

BMC Plant Biol. 2017 Sep 11;17(1):151. doi: 10.1186/s12870-017-1098-z.

Abstract

BACKGROUND

Seed dormancy, defined as the incapability of a viable seed to germinate under favourable conditions, is an important trait in nature and agriculture. Despite extensive research on dormancy and germination, many questions about the molecular mechanisms controlling these traits remain unanswered, likely due to its genetic complexity and the large environmental effects which are characteristic of these quantitative traits. To boost research towards revealing mechanisms in the control of seed dormancy and germination we depend on the identification of genes controlling those traits.

METHODS

We used transcriptome analysis combined with a reverse genetics approach to identify genes that are prominent for dormancy maintenance and germination in imbibed seeds of Arabidopsis thaliana. Comparative transcriptomics analysis was employed on freshly harvested (dormant) and after-ripened (AR; non-dormant) 24-h imbibed seeds of four different DELAY OF GERMINATION near isogenic lines (DOGNILs) and the Landsberg erecta (Ler) wild type with varying levels of primary dormancy. T-DNA knock-out lines of the identified genes were phenotypically investigated for their effect on dormancy and AR.

RESULTS

We identified conserved sets of 46 and 25 genes which displayed higher expression in seeds of all dormant and all after-ripened DOGNILs and Ler, respectively. Knock-out mutants in these genes showed dormancy and germination related phenotypes.

CONCLUSIONS

Most of the identified genes had not been implicated in seed dormancy or germination. This research will be useful to further decipher the molecular mechanisms by which these important ecological and commercial traits are regulated.

摘要

背景

种子休眠被定义为有活力的种子在适宜条件下不能萌发的现象,这是自然界和农业中的一个重要特性。尽管对休眠和萌发进行了广泛研究,但关于控制这些特性的分子机制仍有许多问题未得到解答,这可能是由于其遗传复杂性以及这些数量性状所特有的大环境效应。为了推动揭示种子休眠和萌发控制机制的研究,我们依赖于鉴定控制这些性状的基因。

方法

我们使用转录组分析结合反向遗传学方法来鉴定在拟南芥吸胀种子中对休眠维持和萌发起重要作用的基因。对四个不同的延迟萌发近等基因系(DOGNILs)以及具有不同程度初级休眠的野生型直立型兰茨贝格(Ler)新鲜收获(休眠)和后熟(AR;非休眠)24小时吸胀种子进行了比较转录组学分析。对鉴定出的基因的T-DNA敲除系进行表型研究,以探究其对休眠和后熟的影响。

结果

我们鉴定出分别在所有休眠和所有后熟的DOGNILs及Ler种子中表达较高的46个和25个保守基因集。这些基因的敲除突变体表现出与休眠和萌发相关的表型。

结论

大多数鉴定出的基因此前未被认为与种子休眠或萌发有关。这项研究将有助于进一步解读调控这些重要生态和商业性状的分子机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8c/5594490/5f2606efdb89/12870_2017_1098_Fig1_HTML.jpg

相似文献

4
Gene expression profiling identifies two regulatory genes controlling dormancy and ABA sensitivity in Arabidopsis seeds.
Plant J. 2010 Feb;61(4):611-22. doi: 10.1111/j.1365-313X.2009.04088.x. Epub 2009 Nov 26.
6
Role of reactive oxygen species in the regulation of Arabidopsis seed dormancy.
Plant Cell Physiol. 2012 Jan;53(1):96-106. doi: 10.1093/pcp/pcr129. Epub 2011 Sep 21.
8
Arabidopsis thaliana DOF6 negatively affects germination in non-after-ripened seeds and interacts with TCP14.
J Exp Bot. 2012 Mar;63(5):1937-49. doi: 10.1093/jxb/err388. Epub 2011 Dec 8.
10
Comparative expression analysis of starch degrading genes between dormant and non-dormant wheat seeds.
Plant Signal Behav. 2018 Jan 2;13(1):e1411449. doi: 10.1080/15592324.2017.1411449. Epub 2017 Dec 26.

引用本文的文献

2
A Role for Allantoate Amidohydrolase (AtAAH) in the Germination of Arabidopsis thaliana Seeds.
Plant Cell Physiol. 2022 Sep 15;63(9):1298-1308. doi: 10.1093/pcp/pcac103.
3
Key Metabolite Differences Between Korean Pine () Seeds With Primary Physiological Dormancy and No-Dormancy.
Front Plant Sci. 2021 Nov 22;12:767108. doi: 10.3389/fpls.2021.767108. eCollection 2021.
4
A New Role for Plastid Thioredoxins in Seed Physiology in Relation to Hormone Regulation.
Int J Mol Sci. 2021 Sep 27;22(19):10395. doi: 10.3390/ijms221910395.
5
Late Embryogenesis Abundant Protein-Client Protein Interactions.
Plants (Basel). 2020 Jun 29;9(7):814. doi: 10.3390/plants9070814.
6
An Updated Overview on the Regulation of Seed Germination.
Plants (Basel). 2020 Jun 1;9(6):703. doi: 10.3390/plants9060703.
8
The roles of metabolic pathways in maintaining primary dormancy of Pinus koraiensis seeds.
BMC Plant Biol. 2019 Dec 11;19(1):550. doi: 10.1186/s12870-019-2167-2.
9
NADP-Dependent Malic Enzyme 1 Participates in the Abscisic Acid Response in .
Front Plant Sci. 2018 Nov 6;9:1637. doi: 10.3389/fpls.2018.01637. eCollection 2018.

本文引用的文献

4
limma powers differential expression analyses for RNA-sequencing and microarray studies.
Nucleic Acids Res. 2015 Apr 20;43(7):e47. doi: 10.1093/nar/gkv007. Epub 2015 Jan 20.
5
Arabidopsis thaliana glyoxalase 2-1 is required during abiotic stress but is not essential under normal plant growth.
PLoS One. 2014 Apr 23;9(4):e95971. doi: 10.1371/journal.pone.0095971. eCollection 2014.
6
Induction and analysis of gibberellin sensitive mutants in Arabidopsis thaliana (L.) heynh.
Theor Appl Genet. 1980 Nov;58(6):257-63. doi: 10.1007/BF00265176.
8
Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis.
Proc Natl Acad Sci U S A. 2013 Sep 17;110(38):15485-90. doi: 10.1073/pnas.1304651110. Epub 2013 Aug 28.
10
Functional network construction in Arabidopsis using rule-based machine learning on large-scale data sets.
Plant Cell. 2011 Sep;23(9):3101-16. doi: 10.1105/tpc.111.088153. Epub 2011 Sep 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验