Roy Mrinmoy, Banerjee Sucheta, Mitra Arijit, Alam Aftab, Aslam M
Department of Physics, Indian Institute of Technology Bombay, Mumbai, India.
Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India.
Chemistry. 2019 Jul 25;25(42):9892-9901. doi: 10.1002/chem.201805859. Epub 2019 May 20.
Herein a newly discovered non-polar solvent based synthesis of MAPbX hybrid perovskite nanoparticles (NPs) is presented, where MA=Methylammonium and X=I, Br and Cl, as well as their mixed halide counterparts. The methodology proposed is simple and uses low-cost commercial precursors. The conventional method of hybrid perovskite preparation requires methylammonium halide precursors and highly polar solvents. Mandatory use of polar solvents and a particular perovskite precursor makes an intermediate compound which then requires a non-polar solvent to recover the NPs. In contrast here, a whole range of mixed halide perovskite NPs is fabricated without using a methylammonium halide precursor and a polar solvent. In this method, a non-polar solvent is used, which provides a better platform for the particle recovery. Organic cations on the nanoparticle surface prevent degradation from water, due to their hydrophobic nature, and hence offer a stable colloidal suspension in toluene for more than three months. Ab-initio calculations within density functional theory (DFT) predict lower formation energies compared to previously reported values, confirming better chemical stability for this synthesis pathway. Through the halide compositional tuning, these NPs exhibit a variety of emission and absorption starting from ultraviolet to near infrared (IR). The absorption spectra of various halide perovskite show a sharp band edge over the visible wavelength with high absorption coefficient. High oscillator strengths due to high excitonic binding energies combined with the simulated finite dipole transition probabilities point towards the observed high absorption. The emission spectra of mixed halide perovskites vary from 400 to 750 nm, which covers the whole range of visible spectra with sharp full-width at half maxima. Different halide perovskite exhibit average recombination lifetime from 5 to 227 ns. Ambient synthesis, chemical robustness and tunability of emission with varying halide compositions make MAPbX (X=I, Br and Cl) NPs appealing for the optoelectronic applications.
本文介绍了一种新发现的基于非极性溶剂合成MAPbX混合钙钛矿纳米颗粒(NPs)的方法,其中MA = 甲胺,X = I、Br和Cl,以及它们的混合卤化物对应物。所提出的方法简单,使用低成本的商业前驱体。传统的混合钙钛矿制备方法需要卤化甲胺前驱体和高极性溶剂。强制使用极性溶剂和特定的钙钛矿前驱体形成一种中间化合物,然后需要非极性溶剂来回收纳米颗粒。相比之下,这里无需使用卤化甲胺前驱体和极性溶剂就能制备出一系列混合卤化物钙钛矿纳米颗粒。在该方法中,使用了一种非极性溶剂,为颗粒回收提供了更好的平台。纳米颗粒表面的有机阳离子因其疏水性质可防止水导致的降解,因此在甲苯中提供了超过三个月的稳定胶体悬浮液。密度泛函理论(DFT)中的从头算计算预测,与先前报道的值相比,形成能更低,证实了该合成途径具有更好的化学稳定性。通过卤化物组成调整,这些纳米颗粒表现出从紫外到近红外(IR)的各种发射和吸收特性。各种卤化物钙钛矿的吸收光谱在可见波长范围内显示出具有高吸收系数的尖锐带边。由于高激子结合能导致的高振子强度与模拟的有限偶极跃迁概率相结合,表明观察到的高吸收现象。混合卤化物钙钛矿的发射光谱在400至750 nm之间变化,覆盖了整个可见光谱范围,半高宽很窄。不同的卤化物钙钛矿表现出5至227 ns的平均复合寿命。环境合成、化学稳定性以及随卤化物组成变化的发射可调性使得MAPbX(X = I、Br和Cl)纳米颗粒在光电子应用中具有吸引力。