Suppr超能文献

基于三重网络模型的未用药双相情感障碍和重性抑郁障碍的异常动态功能网络连接。

Abnormal dynamic functional network connectivity in unmedicated bipolar and major depressive disorders based on the triple-network model.

机构信息

Department of Applied Psychology, Guangdong University of Foreign Studies, Guangzhou510006, China.

School of Psychology, Institute of Brain Research and Rehabilitation (IBRR), Center for the Study of Applied Psychology & MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, South China Normal University, Guangzhou510631, China.

出版信息

Psychol Med. 2020 Feb;50(3):465-474. doi: 10.1017/S003329171900028X. Epub 2019 Mar 14.

Abstract

BACKGROUND

Previous studies have analyzed brain functional connectivity to reveal the neural physiopathology of bipolar disorder (BD) and major depressive disorder (MDD) based on the triple-network model [involving the salience network, default mode network (DMN), and central executive network (CEN)]. However, most studies assumed that the brain intrinsic fluctuations throughout the entire scan are static. Thus, we aimed to reveal the dynamic functional network connectivity (dFNC) in the triple networks of BD and MDD.

METHODS

We collected resting state fMRI data from 51 unmedicated depressed BD II patients, 51 unmedicated depressed MDD patients, and 52 healthy controls. We analyzed the dFNC by using an independent component analysis, sliding window correlation and k-means clustering, and used the parameters of dFNC state properties and dFNC variability for group comparisons.

RESULTS

The dFNC within the triple networks could be clustered into four configuration states, three of them showing dense connections (States 1, 2, and 4) and the other one showing sparse connections (State 3). Both BD and MDD patients spent more time in State 3 and showed decreased dFNC variability between posterior DMN and right CEN (rCEN) compared with controls. The MDD patients showed specific decreased dFNC variability between anterior DMN and rCEN compared with controls.

CONCLUSIONS

This study revealed more common but less specific dFNC alterations within the triple networks in unmedicated depressed BD II and MDD patients, which indicated their decreased information processing and communication ability and may help us to understand their abnormal affective and cognitive functions clinically.

摘要

背景

先前的研究基于三重网络模型(包括突显网络、默认模式网络[DMN]和中央执行网络[CEN])分析了大脑功能连接,以揭示双相情感障碍(BD)和重度抑郁症(MDD)的神经生理病理学。然而,大多数研究假设整个扫描过程中的大脑内在波动是静态的。因此,我们旨在揭示 BD 和 MDD 三重网络中的动态功能网络连接(dFNC)。

方法

我们从 51 名未接受药物治疗的抑郁发作 BD II 患者、51 名未接受药物治疗的抑郁发作 MDD 患者和 52 名健康对照中收集了静息态 fMRI 数据。我们通过独立成分分析、滑动窗口相关和 k-均值聚类来分析 dFNC,并使用 dFNC 状态特性和 dFNC 变异性的参数进行组间比较。

结果

三重网络内的 dFNC 可聚类为四个配置状态,其中三个状态显示密集连接(状态 1、2 和 4),另一个状态显示稀疏连接(状态 3)。BD 和 MDD 患者在状态 3 中花费的时间更多,与对照组相比,后 DMN 与右 CEN(rCEN)之间的 dFNC 变异性降低。与对照组相比,MDD 患者在前 DMN 与 rCEN 之间表现出特定的 dFNC 变异性降低。

结论

本研究揭示了未接受药物治疗的抑郁发作 BD II 和 MDD 患者三重网络内更常见但特异性较低的 dFNC 改变,这表明他们的信息处理和沟通能力下降,可能有助于我们从临床上理解他们异常的情感和认知功能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验