Suppr超能文献

双相情感障碍和重度抑郁症的未服药患者前额叶区域的静息态功能网络连接存在差异。

Resting-state functional network connectivity in prefrontal regions differs between unmedicated patients with bipolar and major depressive disorders.

作者信息

He Hao, Yu Qingbao, Du Yuhui, Vergara Victor, Victor Teresa A, Drevets Wayne C, Savitz Jonathan B, Jiang Tianzi, Sui Jing, Calhoun Vince D

机构信息

The Mind Research Network & Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, USA; Electrical and Computer Engineering Department, University of New Mexico, Albuquerque, NM, USA.

The Mind Research Network & Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, USA.

出版信息

J Affect Disord. 2016 Jan 15;190:483-493. doi: 10.1016/j.jad.2015.10.042. Epub 2015 Oct 31.

Abstract

BACKGROUND

Differentiating bipolar disorder (BD) from major depressive disorder (MDD) often poses a major clinical challenge, and optimal clinical care can be hindered by misdiagnoses. This study investigated the differences between BD and MDD in resting-state functional network connectivity (FNC) using a data-driven image analysis method.

METHODS

In this study, fMRI data were collected from unmedicated subjects including 13 BD, 40 MDD and 33 healthy controls (HC). The FNC was calculated between functional brain networks derived from fMRI using group independent component analysis (ICA). Group comparisons were performed on connectivity strengths and other graph measures of FNC matrices.

RESULTS

Statistical tests showed that, compared to MDD, the FNC in BD was characterized by more closely connected and more efficient topological structures as assessed by graph theory. The differences were found at both the whole-brain-level and the functional-network-level in prefrontal networks located in the dorsolateral/ventrolateral prefrontal cortex (DLPFC, VLPFC) and anterior cingulate cortex (ACC). Furthermore, interconnected structures in these networks in both patient groups were negatively associated with symptom severity on depression rating scales.

LIMITATIONS

As patients were unmedicated, the sample sizes were relatively small, although they were comparable to those in previous fMRI studies comparing BD and MDD.

CONCLUSIONS

Our results suggest that the differences in FNC of the PFC reflect distinct pathophysiological mechanisms in BD and MDD. Such findings ultimately may elucidate the neural pathways in which distinct functional changes can give rise to the clinical differences observed between these syndromes.

摘要

背景

区分双相情感障碍(BD)和重度抑郁症(MDD)常常是一项重大的临床挑战,误诊可能会阻碍最佳临床护理。本研究使用数据驱动的图像分析方法,调查了BD和MDD在静息态功能网络连通性(FNC)方面的差异。

方法

在本研究中,收集了未接受药物治疗的受试者的功能磁共振成像(fMRI)数据,包括13名BD患者、40名MDD患者和33名健康对照(HC)。使用组独立成分分析(ICA)从fMRI得出的功能性脑网络之间计算FNC。对FNC矩阵的连通性强度和其他图形指标进行组间比较。

结果

统计测试表明,与MDD相比,通过图论评估,BD中的FNC具有更紧密连接和更高效的拓扑结构。在位于背外侧/腹外侧前额叶皮层(DLPFC、VLPFC)和前扣带回皮层(ACC)的前额叶网络的全脑水平和功能网络水平均发现了差异。此外,两个患者组中这些网络中的相互连接结构与抑郁评定量表上的症状严重程度呈负相关。

局限性

由于患者未接受药物治疗,样本量相对较小,尽管与之前比较BD和MDD的fMRI研究中的样本量相当。

结论

我们的结果表明,前额叶皮层FNC的差异反映了BD和MDD中不同的病理生理机制。这些发现最终可能阐明神经通路,其中不同的功能变化可能导致这些综合征之间观察到的临床差异。

相似文献

4
State-Dependent Differences in Emotion Regulation Between Unmedicated Bipolar Disorder and Major Depressive Disorder.
JAMA Psychiatry. 2015 Jul;72(7):687-96. doi: 10.1001/jamapsychiatry.2015.0161.
6
Changes of Functional Brain Networks in Major Depressive Disorder: A Graph Theoretical Analysis of Resting-State fMRI.
PLoS One. 2015 Sep 1;10(9):e0133775. doi: 10.1371/journal.pone.0133775. eCollection 2015.
10
Anomalous prefrontal-limbic activation and connectivity in youth at high-risk for bipolar disorder.
J Affect Disord. 2017 Nov;222:7-13. doi: 10.1016/j.jad.2017.05.051. Epub 2017 Jun 23.

引用本文的文献

2
Abnormal large-scale brain functional network dynamics in social anxiety disorder.
CNS Neurosci Ther. 2024 Aug;30(8):e14904. doi: 10.1111/cns.14904.
3
Brain-based graph-theoretical predictive modeling to map the trajectory of anhedonia, impulsivity, and hypomania from the human functional connectome.
Neuropsychopharmacology. 2024 Jun;49(7):1162-1170. doi: 10.1038/s41386-024-01842-1. Epub 2024 Mar 13.
6
Large-scale brain functional network abnormalities in social anxiety disorder.
Psychol Med. 2023 Oct;53(13):6194-6204. doi: 10.1017/S0033291722003439. Epub 2022 Nov 4.
7
Altered language network lateralization in euthymic bipolar patients: a pilot study.
Transl Psychiatry. 2022 Oct 6;12(1):435. doi: 10.1038/s41398-022-02202-7.
10
Mood disorders disrupt the functional dynamics, not spatial organization of brain resting state networks.
Neuroimage Clin. 2021;32:102833. doi: 10.1016/j.nicl.2021.102833. Epub 2021 Sep 30.

本文引用的文献

1
Discriminating Bipolar Disorder From Major Depression Based on SVM-FoBa: Efficient Feature Selection With Multimodal Brain Imaging Data.
IEEE Trans Auton Ment Dev. 2015 Dec;7(4):320-331. doi: 10.1109/TAMD.2015.2440298. Epub 2015 Oct 26.
2
In search of multimodal neuroimaging biomarkers of cognitive deficits in schizophrenia.
Biol Psychiatry. 2015 Dec 1;78(11):794-804. doi: 10.1016/j.biopsych.2015.02.017. Epub 2015 Feb 24.
3
Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia.
Neuroimage Clin. 2014 Jul 24;5:298-308. doi: 10.1016/j.nicl.2014.07.003. eCollection 2014.
4
Bipolar I disorder and major depressive disorder show similar brain activation during depression.
Bipolar Disord. 2014 Nov;16(7):703-12. doi: 10.1111/bdi.12225. Epub 2014 Jul 3.
5
Addressing head motion dependencies for small-world topologies in functional connectomics.
Front Hum Neurosci. 2013 Dec 26;7:910. doi: 10.3389/fnhum.2013.00910. eCollection 2013.
6
Function-structure associations of the brain: evidence from multimodal connectivity and covariance studies.
Neuroimage. 2014 Nov 15;102 Pt 1:11-23. doi: 10.1016/j.neuroimage.2013.09.044. Epub 2013 Sep 29.
9
Classification of schizophrenia patients based on resting-state functional network connectivity.
Front Neurosci. 2013 Jul 30;7:133. doi: 10.3389/fnins.2013.00133. eCollection 2013.
10
BrainNet Viewer: a network visualization tool for human brain connectomics.
PLoS One. 2013 Jul 4;8(7):e68910. doi: 10.1371/journal.pone.0068910. Print 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验