Suppr超能文献

基于快速试验序列的 EEG 脑机接口的事件驱动 AR 过程模型。

An Event-Driven AR-Process Model for EEG-Based BCIs With Rapid Trial Sequences.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2019 May;27(5):798-804. doi: 10.1109/TNSRE.2019.2903840. Epub 2019 Mar 8.

Abstract

Electroencephalography (EEG) is an effective non-invasive measurement method to infer user intent in brain-computer interface (BCI) systems for control and communication, however, these systems often lack sufficient accuracy and speed due to low separability of class-conditional EEG feature distributions. Many factors impact system performance, including inadequate training datasets and models' ignorance of the temporal dependency of brain responses to serial stimuli. Here, we propose a signal model for event-related responses in the EEG evoked with a rapid sequence of stimuli in BCI applications. The model describes the EEG as a superposition of impulse responses time-locked to stimuli corrupted with an autoregressive noise process. The performance of the signal model is assessed in the context of RSVP keyboard, a language-model-assisted EEG-based BCI for typing. EEG data obtained for model calibration from 10 healthy participants are used to fit and compare two models: the proposed sequence-based EEG model and the trial-based feature-class-conditional distribution model that ignores temporal dependencies, which has been used in the previous work. The simulation studies indicate that the earlier model that ignores temporal dependencies may be causing drastic reductions in achievable information transfer rate (ITR). Furthermore, the proposed model, with better regularization, may achieve improved accuracy with fewer calibration data samples, potentially helping to reduce calibration time. Specifically, results show an average 8.6% increase in (cross-validated) calibration AUC for a single channel of EEG, and 54% increase in the ITR in a typing task.

摘要

脑电图(EEG)是一种有效的非侵入性测量方法,可以在脑机接口(BCI)系统中推断用户意图,用于控制和通信,然而,由于类条件 EEG 特征分布的可分离性低,这些系统通常缺乏足够的准确性和速度。许多因素会影响系统性能,包括训练数据集不足和模型忽略大脑对连续刺激的时间依赖性。在这里,我们为 BCI 应用中快速序列刺激诱发的事件相关反应提出了一种信号模型。该模型将 EEG 描述为与刺激时间锁定的脉冲响应的叠加,受到自回归噪声过程的干扰。在 RSVP 键盘的背景下评估信号模型的性能,RSVP 键盘是一种基于语言模型辅助的 EEG 的 BCI 用于打字。从 10 名健康参与者那里获得的用于模型校准的 EEG 数据用于拟合和比较两种模型:基于序列的 EEG 模型和忽略时间依赖性的基于试次的特征类条件分布模型,该模型已在以前的工作中使用。仿真研究表明,忽略时间依赖性的早期模型可能会导致可实现信息传输率(ITR)急剧下降。此外,具有更好正则化的建议模型可以用更少的校准数据样本实现更高的准确性,从而有可能帮助减少校准时间。具体来说,结果表明单个 EEG 通道的校准 AUC 平均增加了 8.6%,打字任务中的 ITR 增加了 54%。

相似文献

1
An Event-Driven AR-Process Model for EEG-Based BCIs With Rapid Trial Sequences.
IEEE Trans Neural Syst Rehabil Eng. 2019 May;27(5):798-804. doi: 10.1109/TNSRE.2019.2903840. Epub 2019 Mar 8.
2
A Parametric EEG Signal Model for BCIs with Rapid-Trial Sequences.
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:118-122. doi: 10.1109/EMBC.2018.8512217.
3
Single-Trial EEG Classification Using Spatio-Temporal Weighting and Correlation Analysis for RSVP-Based Collaborative Brain Computer Interface.
IEEE Trans Biomed Eng. 2024 Feb;71(2):553-562. doi: 10.1109/TBME.2023.3309255. Epub 2024 Jan 19.
4
Enhancing the Hybrid BCI Performance With the Common Frequency Pattern in Dual-Channel EEG.
IEEE Trans Neural Syst Rehabil Eng. 2019 Jul;27(7):1360-1369. doi: 10.1109/TNSRE.2019.2920748. Epub 2019 Jun 4.
6
A probabilistic approach for calibration time reduction in hybrid EEG-fTCD brain-computer interfaces.
Biomed Eng Online. 2020 Apr 16;19(1):23. doi: 10.1186/s12938-020-00765-4.
7
Task-dependent signal variations in EEG error-related potentials for brain-computer interfaces.
J Neural Eng. 2013 Apr;10(2):026024. doi: 10.1088/1741-2560/10/2/026024. Epub 2013 Mar 26.
8
Language-Model Assisted Brain Computer Interface for Typing: A Comparison of Matrix and Rapid Serial Visual Presentation.
IEEE Trans Neural Syst Rehabil Eng. 2015 Sep;23(5):910-20. doi: 10.1109/TNSRE.2015.2411574. Epub 2015 Mar 11.
9
A novel hybrid BCI speller based on RSVP and SSVEP paradigm.
Comput Methods Programs Biomed. 2020 Apr;187:105326. doi: 10.1016/j.cmpb.2020.105326. Epub 2020 Jan 22.
10
New approach for designing cVEP BCI stimuli based on superposition of edge responses.
Biomed Phys Eng Express. 2020 Jun 12;6(4):045018. doi: 10.1088/2057-1976/ab98e7.

本文引用的文献

1
Feedback Related Potentials for EEG-Based Typing Systems.
Front Hum Neurosci. 2022 Jan 25;15:788258. doi: 10.3389/fnhum.2021.788258. eCollection 2021.
2
Optimal Query Selection Using Multi-Armed Bandits.
IEEE Signal Process Lett. 2018 Dec;25(12):1870-1874. doi: 10.1109/LSP.2018.2878066. Epub 2018 Oct 26.
3
A Parametric EEG Signal Model for BCIs with Rapid-Trial Sequences.
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:118-122. doi: 10.1109/EMBC.2018.8512217.
4
Exploring Cognitive Flexibility With a Noninvasive BCI Using Simultaneous Steady-State Visual Evoked Potentials and Sensorimotor Rhythms.
IEEE Trans Neural Syst Rehabil Eng. 2018 May;26(5):936-947. doi: 10.1109/TNSRE.2018.2817924.
5
Probabilistic Simulation Framework for EEG-Based BCI Design.
Brain Comput Interfaces (Abingdon). 2016;3(4):171-185. doi: 10.1080/2326263X.2016.1252621. Epub 2016 Dec 5.
6
Double ErrP Detection for Automatic Error Correction in an ERP-Based BCI Speller.
IEEE Trans Neural Syst Rehabil Eng. 2018 Jan;26(1):26-36. doi: 10.1109/TNSRE.2017.2755018. Epub 2017 Sep 21.
7
Classification of Movement and Inhibition Using a Hybrid BCI.
Front Neurorobot. 2017 Aug 15;11:38. doi: 10.3389/fnbot.2017.00038. eCollection 2017.
8
Spatio-Temporal EEG Models for Brain Interfaces.
Signal Processing. 2017 Feb;131:333-343. doi: 10.1016/j.sigpro.2016.08.001. Epub 2016 Aug 6.
9
Language-Model Assisted Brain Computer Interface for Typing: A Comparison of Matrix and Rapid Serial Visual Presentation.
IEEE Trans Neural Syst Rehabil Eng. 2015 Sep;23(5):910-20. doi: 10.1109/TNSRE.2015.2411574. Epub 2015 Mar 11.
10
Errare machinale est: the use of error-related potentials in brain-machine interfaces.
Front Neurosci. 2014 Jul 22;8:208. doi: 10.3389/fnins.2014.00208. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验