Suppr超能文献

基于 ERP 的脑机接口拼写器中的自动纠错的双 ErrP 检测。

Double ErrP Detection for Automatic Error Correction in an ERP-Based BCI Speller.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2018 Jan;26(1):26-36. doi: 10.1109/TNSRE.2017.2755018. Epub 2017 Sep 21.

Abstract

Brain-computer interface (BCI) is a useful device for people with severe motor disabilities. However, due to its low speed and low reliability, BCI still has a very limited application in daily real-world tasks. This paper proposes a P300-based BCI speller combined with a double error-related potential (ErrP) detection to automatically correct erroneous decisions. This novel approach introduces a second error detection to infer whether wrong automatic correction also elicits a second ErrP. Thus, two single-trial responses, instead of one, contribute to the final selection, improving the reliability of error detection. Moreover, to increase error detection, the evoked potential detected as target by the P300 classifier is combined with the evoked error potential at a feature-level. Discriminable error and positive potentials (response to correct feedback) were clearly identified. The proposed approach was tested on nine healthy participants and one tetraplegic participant. The online average accuracy for the first and second ErrPs were 88.4% and 84.8%, respectively. With automatic correction, we achieved an improvement around 5% achieving 89.9% in spelling accuracy for an effective 2.92 symbols/min. The proposed approach revealed that double ErrP detection can improve the reliability and speed of BCI systems.

摘要

脑机接口(BCI)是一种对严重运动障碍患者非常有用的设备。然而,由于其速度低、可靠性低,BCI 在日常实际任务中的应用仍然非常有限。本文提出了一种基于 P300 的 BCI 拼写器,并结合了双错误相关电位(ErrP)检测,以自动纠正错误的决策。这种新方法引入了第二个错误检测,以推断错误的自动校正是否也会引发第二个 ErrP。因此,两个单试次响应,而不是一个,有助于最终选择,从而提高错误检测的可靠性。此外,为了提高错误检测的能力,将 P300 分类器检测到的目标诱发电位与特征级别的诱发错误电位相结合。可以清楚地识别出可区分的错误和正电位(对正确反馈的反应)。该方法在 9 名健康参与者和 1 名四肢瘫痪参与者上进行了测试。第一个和第二个 ErrP 的在线平均准确率分别为 88.4%和 84.8%。通过自动校正,我们实现了约 5%的拼写准确率的提高,达到了 89.9%,有效速度为 2.92 个符号/分钟。该方法表明,双 ErrP 检测可以提高 BCI 系统的可靠性和速度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验