Ball Melissa, Zhang Boyuan, Zhong Yu, Fowler Brandon, Xiao Shengxiong, Ng Fay, Steigerwald Michael, Nuckolls Colin
Department of Chemistry , Columbia University , New York , New York 10027 , United States.
The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Optoelectronic Nano Materials and Devices Institute, Department of Chemistry , Shanghai Normal University , Shanghai 200234 , China.
Acc Chem Res. 2019 Apr 16;52(4):1068-1078. doi: 10.1021/acs.accounts.9b00017. Epub 2019 Mar 14.
This Account describes a body of research on the design, synthesis, and application of a new class of electronic materials made from conjugated macrocycles. Our macrocyclic design takes into consideration the useful attributes of fullerenes and what properties make fullerenes efficient n-type materials. We identified four electronic and structural elements: (1) a three-dimensional shape; (2) a conjugated and delocalized π-space; (3) the presence of an interior and exterior to the π-surface; and (4) low-energy unoccupied molecular orbitals allowing them to accept electrons. The macrocyclic design incorporates some of these properties, including a three-dimensional shape, an interior/exterior to the π-surface, and low-lying LUMOs maintaining the n-type semiconducting behavior, yet we also install synthetic flexibility in our approach in order to tune the properties further. Each of the macrocycles comprises perylenediimide cores wound together with linkers. The perylenediimide building block endows each macrocycle with the ability to accept electrons, while the synthetic flexibility to install different linkers allows us to create macrocycles with different electronic properties and sizes. We have created three macrocycles that all absorb well into the visible range of the solar spectrum and possess different shapes and sizes. We then use these materials in an array of applications that take advantage of their ability to function as n-type semiconductors, absorb in the visible range of the solar spectrum, and possess intramolecular cavities. This Account will discuss our progress in incorporating these new macrocycles in organic solar cells, organic photodetectors, organic field effect transistors, and sensors. The macrocycles outperform acyclic controls in organic solar cells. We find the more rigid macrocyclic structure results in less intrinsic charges and lower dark current in organic photodetectors. Our macrocyclic-based photodetector has the highest detectivity of non-fullerene acceptors. The macrocycles also function as sensors and are able to recognize nuanced differences in analytes. Perylenediimide-based fused oligomers are efficient materials in both organic solar cells and field effect transistors. We will use the oligomers to construct macrocycles for use in solar energy conversion. In addition, we will incorporate different electron-rich linkers in our cycles in an attempt to engineer the HOMO/LUMO gap further. Looking further into the future, we envision opportunities in applying these conjugated macrocycles as electronic host/guest materials, as concatenated electronic materials by threading the macrocycles with electroactive oligomers, and as a locus for catalysis that is driven by light and electric fields.
本综述介绍了一系列关于由共轭大环化合物制成的新型电子材料的设计、合成及应用的研究。我们的大环设计考虑了富勒烯的有用特性以及使富勒烯成为高效n型材料的性质。我们确定了四个电子和结构要素:(1)三维形状;(2)共轭且离域的π空间;(3)π表面的内部和外部;(4)低能量未占据分子轨道,使其能够接受电子。大环设计融入了其中一些特性,包括三维形状、π表面的内部/外部以及维持n型半导体行为的低能最低未占分子轨道(LUMO),但我们在方法中也引入了合成灵活性,以便进一步调整性质。每个大环化合物都包含由连接体缠绕在一起的苝二酰亚胺核心。苝二酰亚胺结构单元赋予每个大环化合物接受电子的能力,而安装不同连接体的合成灵活性使我们能够创建具有不同电子性质和尺寸的大环化合物。我们制备了三种大环化合物,它们都能很好地吸收太阳光谱的可见光范围,并且具有不同的形状和尺寸。然后,我们将这些材料应用于一系列利用其作为n型半导体的功能、吸收太阳光谱可见光范围以及具有分子内空腔的应用中。本综述将讨论我们在将这些新型大环化合物应用于有机太阳能电池、有机光电探测器、有机场效应晶体管和传感器方面取得的进展。这些大环化合物在有机太阳能电池中性能优于非环状对照物。我们发现更刚性的大环结构在有机光电探测器中导致更少的本征电荷和更低的暗电流。我们基于大环化合物的光电探测器具有非富勒烯受体的最高探测率。这些大环化合物还可作为传感器,能够识别分析物中的细微差异。基于苝二酰亚胺的稠合低聚物在有机太阳能电池和场效应晶体管中都是高效材料。我们将使用这些低聚物构建用于太阳能转换的大环化合物。此外,我们将在大环化合物中引入不同的富电子连接体,试图进一步设计最高已占分子轨道(HOMO)/最低未占分子轨道(LUMO)能隙。展望更长远的未来,我们设想了将这些共轭大环化合物用作电子主体/客体材料、通过将大环化合物与电活性低聚物穿线连接作为串联电子材料以及作为由光和电场驱动的催化位点的机会。