a Department of Surgery and Departemnt of Physiology & Cell Biology, College of Medicine, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University , Columbus , OH USA.
b McPherson Eye Research Institute, University of Wisconsin , Madison , WI.
Autophagy. 2019 Sep;15(9):1539-1557. doi: 10.1080/15548627.2019.1586248. Epub 2019 Mar 14.
Autophagosome-lysosome fusion is a common critical step in various forms of macroautophagy/autophagy including mitophagy, the selective degradation of mitochondria. Regulations of this fusion process remain poorly defined. Here we have determined the role of SIGMAR1, a unique endoplasmic reticulum membrane protein. Knockout of impaired mitochondrial clearance without altering the PINK1-PRKN/Parkin signaling, in mouse retinal explants and cultured cells treated with carbonyl cyanide m-chlorophenyl hydrazone (CCCP) for induction of mitophagy. SIGMAR1 depletion also caused accumulation of autophagosome markers LC3-II and SQSTM1, but did not change the levels of BECN1 and ATG7, proteins associated with autophagosome biogenesis. Lysosomal pH and protease activities were not negatively affected. However, knockout partially compromised autophagosome-lysosome fusion in CCCP-treated NSC34 cells, as revealed by reduced GFP fluorescence quenching of GFP-RFP-LC3-II puncta and co-localization of lysosomes with mitochondria. Furthermore, SIGMAR1 co-immunoprecipitated with ATG14, STX17, and VAMP8 (but not SNAP29), proteins key to autophagosome-lysosome membrane fusion. Re-expressing SIGMAR1 in the null background rescued clearance of mitochondria and autophagosomes. In summary, we started out finding that knockout impaired the clearance of mitochondria and autophagosomes, and then narrowed down the SIGMAR1 modulation to the autophagosome-lysosome fusion step. This study may shed new light on understanding autophagy-associated cyto-protection and disease mechanisms. : APEX2, a genetically engineered peroxidase; BiFC, bimolecule fluorescence complementation; CCCP, a mitophagy inducing compound; CRISPR, clustered regularly interspaced short palindromic repeats; EM, electron microscopy; ER, endoplasmic reticulum; MAP1LC3/LC3, microtubule-associated protein 1 light chain 3; SIGMAR1, sigma non-opioid intracellular receptor 1.
自噬体-溶酶体融合是各种形式巨自噬/自噬的共同关键步骤,包括线粒体的选择性降解即 mitophagy。该融合过程的调节仍未得到明确界定。在这里,我们确定了独特的内质网膜蛋白 SIGMAR1 的作用。在用羰基氰化物 m-氯苯腙 (CCCP) 诱导 mitophagy 处理的小鼠视网膜外植体和培养细胞中, 缺失会损害线粒体清除而不改变 PINK1-PRKN/Parkin 信号,而 缺失也会导致自噬体标志物 LC3-II 和 SQSTM1 的积累,但不会改变与自噬体生物发生相关的 BECN1 和 ATG7 蛋白的水平。溶酶体 pH 值和蛋白酶活性没有受到负面影响。然而, 缺失在 CCCP 处理的 NSC34 细胞中部分损害了自噬体-溶酶体融合,这表现在 GFP-RFP-LC3-II 斑点的 GFP 荧光猝灭减少和溶酶体与线粒体的共定位减少。此外,SIGMAR1 与 ATG14、STX17 和 VAMP8(但不是 SNAP29)共免疫沉淀,这些蛋白是自噬体-溶酶体膜融合的关键。在缺失背景下重新表达 SIGMAR1 可挽救线粒体和自噬体的清除。总之,我们首先发现 缺失会损害线粒体和自噬体的清除,然后将 SIGMAR1 的调节缩小到自噬体-溶酶体融合步骤。这项研究可能为理解自噬相关的细胞保护和疾病机制提供新的视角。 : APEX2,一种基因工程过氧化物酶;BiFC,双分子荧光互补;CCCP,一种诱导 mitophagy 的化合物;CRISPR,成簇的规律间隔的短回文重复序列;EM,电子显微镜;ER,内质网;MAP1LC3/LC3,微管相关蛋白 1 轻链 3;SIGMAR1,sigma 非阿片类细胞内受体 1。