Suppr超能文献

具有饱和输入和未知控制方向的非线性 MIMO 系统的自适应神经命令滤波控制

Adaptive Neural Command Filtering Control for Nonlinear MIMO Systems With Saturation Input and Unknown Control Direction.

出版信息

IEEE Trans Cybern. 2020 Jun;50(6):2536-2545. doi: 10.1109/TCYB.2019.2901250. Epub 2019 Mar 13.

Abstract

In this paper, the tracking control problem is considered for a class of multiple-input multiple-output (MIMO) nonlinear systems with input saturation and unknown direction control gains. A command filtered adaptive neural networks (NNs) control method is presented with regard to the MIMO systems by designing the virtual controllers and error compensation signals. First, the command filtering is used to solve the "explosion of complexity" problem in the conventional backstepping design and the nonlinearities are approximated by NNs. Then, the error compensation signals are developed to conquer the shortcoming of the dynamic surface method. In addition, the Nussbaum-type functions are utilized to cope with the unknown direction control gains. The effectiveness of the proposed new design scheme is illustrated by simulation examples.

摘要

本文针对一类具有输入饱和和未知方向控制增益的多输入多输出(MIMO)非线性系统,考虑了跟踪控制问题。通过设计虚拟控制器和误差补偿信号,提出了一种针对 MIMO 系统的命令滤波自适应神经网络(NNs)控制方法。首先,利用命令滤波解决了传统反推设计中的“复杂性爆炸”问题,并通过 NNs 逼近非线性。然后,开发了误差补偿信号来克服动态面方法的缺点。此外,利用 Nussbaum 型函数来处理未知的方向控制增益。通过仿真示例验证了所提出的新设计方案的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验