Suppr超能文献

用于 MRI 对比剂评估的嵌合小鼠模型。

Chimeric mouse model for MRI contrast agent evaluation.

机构信息

Michigan State University, Department of Radiology, East Lansing, Michigan.

Michigan State University Institute of Quantitative Health Science and Engineering, East Lansing, Michigan.

出版信息

Magn Reson Med. 2019 Jul;82(1):387-394. doi: 10.1002/mrm.27730. Epub 2019 Mar 15.

Abstract

PURPOSE

While rodents are the primary animal models for contrast agent evaluation, rodents can potentially misrepresent human organ clearance of newly developed contrast agents. For example, gadolinium (Gd)-BOPTA has ~50% hepatic clearance in rodents, but ~5% in humans. This study demonstrates the benefit of chimeric mice expressing human hepatic OATPs (organic anion-transporting polypeptides) to improve evaluation of novel contrast agents for clinical use.

METHODS

FVB (wild-type) and OATP1B1/1B3 knock-in mice were injected with hepatospecific MRI contrast agents (Gd-EOB-DTPA, Gd-BOPTA) and nonspecific Gd-DTPA. T -weighted dynamic contrast-enhanced MRI was performed on mice injected intravenously. Hepatic MRI signal enhancement was calculated per time point. Mass of gadolinium cleared per time point and percentage elimination by means of feces and urine were also measured.

RESULTS

Following intravenous injection of Gd-BOPTA in chimeric OATP1B1/1B3 knock-in mice, hepatic MRI signal enhancement and elimination by liver was more reflective of human hepatic clearance than that measured in wild-type mice. Gd-BOPTA hepatic MRI signal enhancement was reduced to 22% relative to wild-type mice. Gd-BOPTA elimination in wild-type mice was 83% fecal compared with 32% fecal in chimeric mice. Hepatic MRI signal enhancement and elimination for Gd-EOB-DTPA and Gd-DTPA were similar between wild-type and chimeric cohorts.

CONCLUSION

Hepatic MRI signal enhancement and elimination of Gd-EOB-DTPA, Gd-BOPTA, and Gd-DTPA in chimeric OATP1B1/1B3 knock-in mice closely mimics that seen in humans. This study provides evidence that the chimeric knock-in mouse is a more useful screening tool for novel MRI contrast agents destined for clinical use as compared to the traditionally used wild-type models.

摘要

目的

虽然啮齿动物是评估对比剂的主要动物模型,但它们可能无法准确反映新开发的对比剂在人体器官中的清除情况。例如,钆(Gd)-BOPTA 在啮齿动物中有50%的肝脏清除率,但在人类中只有5%。本研究证明了表达人肝有机阴离子转运多肽(organic anion-transporting polypeptides,OATPs)的嵌合小鼠有助于改善用于临床的新型对比剂的评估。

方法

FVB(野生型)和 OATP1B1/1B3 基因敲入小鼠分别静脉注射肝特异性 MRI 对比剂(Gd-EOB-DTPA、Gd-BOPTA)和非特异性 Gd-DTPA。对静脉注射的小鼠进行 T1 加权动态对比增强 MRI。根据每个时间点计算肝 MRI 信号增强。还测量每个时间点清除的镧系元素质量以及通过粪便和尿液的消除百分比。

结果

在嵌合 OATP1B1/1B3 基因敲入小鼠中静脉注射 Gd-BOPTA 后,肝 MRI 信号增强和肝脏清除率更能反映人类肝脏清除率,而不是野生型小鼠。Gd-BOPTA 在野生型小鼠中的肝 MRI 信号增强降低至 22%,而在嵌合小鼠中降低至 32%。Gd-BOPTA 在野生型小鼠中的消除率为 83%通过粪便,而嵌合小鼠中为 32%。Gd-EOB-DTPA 和 Gd-DTPA 的肝 MRI 信号增强和消除在野生型和嵌合型小鼠中相似。

结论

嵌合 OATP1B1/1B3 基因敲入小鼠中 Gd-EOB-DTPA、Gd-BOPTA 和 Gd-DTPA 的肝 MRI 信号增强和消除与人类非常相似。本研究提供的证据表明,与传统使用的野生型模型相比,嵌合基因敲入小鼠是一种更有用的新型 MRI 对比剂筛选工具,可用于临床应用。

相似文献

1
Chimeric mouse model for MRI contrast agent evaluation.
Magn Reson Med. 2019 Jul;82(1):387-394. doi: 10.1002/mrm.27730. Epub 2019 Mar 15.
2
Evaluation of gadoxetate disodium as a contrast agent for mouse liver imaging: comparison with gadobenate dimeglumine.
Magn Reson Imaging. 2009 Jan;27(1):101-7. doi: 10.1016/j.mri.2008.05.015. Epub 2008 Jul 3.
4
Quantifying differences in hepatic uptake of the liver specific contrast agents Gd-EOB-DTPA and Gd-BOPTA: a pilot study.
Eur Radiol. 2012 Mar;22(3):642-53. doi: 10.1007/s00330-011-2302-4. Epub 2011 Oct 9.
5
A comparison of two MR hepatobiliary gadolinium chelates: Gd-BOPTA and Gd-EOB-DTPA.
J Comput Assist Tomogr. 1998 Jul-Aug;22(4):643-50. doi: 10.1097/00004728-199807000-00026.
6
Liver vessel enhancement by Gd-BOPTA and Gd-EOB-DTPA: a comparison in healthy volunteers.
Acta Radiol. 2009 Sep;50(7):709-15. doi: 10.1080/02841850903055603.
8
Kinetics of gadobenate dimeglumine in isolated perfused rat liver: MR imaging evaluation.
Radiology. 2003 Oct;229(1):119-25. doi: 10.1148/radiol.2291020726. Epub 2003 Aug 27.

引用本文的文献

1
Species-Specific Hepatic Uptake of [Cu]Cu-EOB-NOTA, A Newly Designed Hepatospecific PET Agent.
Mol Imaging Biol. 2025 Apr 30. doi: 10.1007/s11307-025-02009-0.
2
Rifampin- and Silymarin-Mediated Pharmacokinetic Interactions of Exogenous and Endogenous Substrates in a Transgenic OATP1B Mouse Model.
Mol Pharm. 2024 May 6;21(5):2284-2297. doi: 10.1021/acs.molpharmaceut.3c01088. Epub 2024 Mar 26.
4
MRI-Based Cell Tracking of OATP-Expressing Cell Transplants by Pre-Labeling with Gd-EOB-DTPA.
Mol Imaging Biol. 2024 Apr;26(2):233-239. doi: 10.1007/s11307-024-01904-2. Epub 2024 Mar 6.
5
MRI-based cell tracking of OATP-expressing cell transplants by pre-labeling with Gd-EOB-DTPA.
Res Sq. 2023 Dec 12:rs.3.rs-3698429. doi: 10.21203/rs.3.rs-3698429/v1.
6
Divalent Manganese Complexes as Potential Replacements for Gadolinium-Based Contrast Agents.
Invest Radiol. 2024 Feb 1;59(2):187-196. doi: 10.1097/RLI.0000000000001053. Epub 2023 Dec 1.
7
Contribution of Humanized Liver Chimeric Mice to the Study of Human Hepatic Drug Transporters: State of the Art and Perspectives.
Eur J Drug Metab Pharmacokinet. 2022 Sep;47(5):621-637. doi: 10.1007/s13318-022-00782-9. Epub 2022 Jul 6.
8
Organic Anion Transporting Polypeptide 1B1 Is a Potential Reporter for Dual MR and Optical Imaging.
Int J Mol Sci. 2021 Aug 16;22(16):8797. doi: 10.3390/ijms22168797.

本文引用的文献

1
Dynamic Contrast-Enhanced MRI of OATP Dysfunction in Diabetes.
Diabetes. 2019 Feb;68(2):271-280. doi: 10.2337/db18-0525. Epub 2018 Nov 28.
2
Hepatic Transporter Expression in Metabolic Syndrome: Phenotype, Serum Metabolic Hormones, and Transcription Factor Expression.
Drug Metab Dispos. 2016 Apr;44(4):518-26. doi: 10.1124/dmd.115.066779. Epub 2016 Feb 4.
3
Use of gadoxetate disodium for functional MRI based on its unique molecular mechanism.
Br J Radiol. 2016;89(1058):20150666. doi: 10.1259/bjr.20150666. Epub 2015 Dec 23.
5
Generation of humanized liver mouse model by transplant of patient-derived fresh human hepatocytes.
Transplant Proc. 2014 May;46(4):1186-90. doi: 10.1016/j.transproceed.2013.11.098.
6
Heritable gene targeting in the mouse and rat using a CRISPR-Cas system.
Nat Biotechnol. 2013 Aug;31(8):681-3. doi: 10.1038/nbt.2661.
7
The SLCO (former SLC21) superfamily of transporters.
Mol Aspects Med. 2013 Apr-Jun;34(2-3):396-412. doi: 10.1016/j.mam.2012.10.009.
8
Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy.
Nat Rev Neurol. 2013 Feb;9(2):106-18. doi: 10.1038/nrneurol.2012.263. Epub 2013 Jan 8.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验