Suppr超能文献

微生物物种的稀有性:寻找可靠的关联。

Rarity of microbial species: In search of reliable associations.

机构信息

UMR Epidemiology of Animal and Zoonotic Diseases, Université Clermont Auvergne, INRA, VetAgro Sup, Saint-Genès-Champanelle, France.

出版信息

PLoS One. 2019 Mar 15;14(3):e0200458. doi: 10.1371/journal.pone.0200458. eCollection 2019.

Abstract

The role of microbial interactions in defining the properties of microbiota is a topic of key interest in microbial ecology. Microbiota contain hundreds to thousands of operational taxonomic units (OTUs), most of them rare. This feature of community structure can lead to methodological difficulties: simulations have shown that methods for detecting pairwise associations between OTUs, which presumably reflect interactions, yield problematic results. The performance of association detection tools is impaired when there is a high proportion of zeros in OTU tables. Our goal was to understand the impact of OTU rarity on the detection of associations. We explored the utility of common statistics for testing associations; the sensitivity of alternative association measures; and the performance of network inference tools. We found that a large proportion of pairwise associations, especially negative associations, cannot be reliably tested. This constraint could hamper the identification of candidate biological agents that could be used to control rare pathogens. Identifying testable associations could serve as an objective method for filtering datasets in lieu of current empirical approaches. This trimming strategy could significantly reduce the computational time needed to infer networks and network inference quality. Different possibilities for improving the analysis of associations within microbiota are discussed.

摘要

微生物相互作用在定义微生物群落特性方面的作用是微生物生态学的一个关键研究课题。微生物群落包含数百到数千个操作分类单元(OTU),其中大多数是罕见的。这种群落结构的特征可能导致方法学上的困难:模拟表明,用于检测 OTU 之间可能反映相互作用的成对关联的方法会产生有问题的结果。当 OTU 表中存在大量零值时,关联检测工具的性能会受到影响。我们的目标是了解 OTU 稀有性对关联检测的影响。我们探讨了常用统计数据在测试关联方面的实用性;替代关联度量的敏感性;以及网络推断工具的性能。我们发现,很大一部分成对关联,尤其是负关联,无法可靠地进行测试。这种限制可能会阻碍识别可能用于控制稀有病原体的候选生物制剂。识别可测试的关联可以作为一种客观的方法来筛选数据集,而不是当前的经验方法。这种修剪策略可以大大减少推断网络和网络推断质量所需的计算时间。讨论了改善微生物群落中关联分析的不同可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ce2/6420159/5bb44b2040f1/pone.0200458.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验