Shaw Grace Tzun-Wen, Pao Yueh-Yang, Wang Daryi
Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan.
BMC Bioinformatics. 2016 Nov 25;17(1):488. doi: 10.1186/s12859-016-1359-0.
BACKGROUND: The complexity and dynamics of microbial communities are major factors in the ecology of a system. With the NGS technique, metagenomics data provides a new way to explore microbial interactions. Lotka-Volterra models, which have been widely used to infer animal interactions in dynamic systems, have recently been applied to the analysis of metagenomic data. RESULTS: In this paper, we present the Lotka-Volterra model based tool, the Metagenomic Microbial Interacticon Simulator (MetaMIS), which is designed to analyze the time series data of microbial community profiles. MetaMIS first infers underlying microbial interactions from abundance tables for operational taxonomic units (OTUs) and then interprets interaction networks using the Lotka-Volterra model. We also embed a Bray-Curtis dissimilarity method in MetaMIS in order to evaluate the similarity to biological reality. MetaMIS is designed to tolerate a high level of missing data, and can estimate interaction information without the influence of rare microbes. For each interaction network, MetaMIS systematically examines interaction patterns (such as mutualism or competition) and refines the biotic role within microbes. As a case study, we collect a human male fecal microbiome and show that Micrococcaceae, a relatively low abundance OTU, is highly connected with 13 dominant OTUs and seems to play a critical role. MetaMIS is able to organize multiple interaction networks into a consensus network for comparative studies; thus we as a case study have also identified a consensus interaction network between female and male fecal microbiomes. CONCLUSIONS: MetaMIS provides an efficient and user-friendly platform that may reveal new insights into metagenomics data. MetaMIS is freely available at: https://sourceforge.net/projects/metamis/ .
背景:微生物群落的复杂性和动态性是系统生态学的主要因素。借助新一代测序(NGS)技术,宏基因组学数据为探索微生物相互作用提供了新途径。Lotka-Volterra模型已被广泛用于推断动态系统中的动物相互作用,最近也被应用于宏基因组学数据的分析。 结果:在本文中,我们展示了基于Lotka-Volterra模型的工具——宏基因组微生物相互作用模拟器(MetaMIS),其旨在分析微生物群落概况的时间序列数据。MetaMIS首先从操作分类单元(OTU)的丰度表中推断潜在的微生物相互作用,然后使用Lotka-Volterra模型解释相互作用网络。我们还在MetaMIS中嵌入了Bray-Curtis相异度方法,以评估与生物现实的相似性。MetaMIS旨在容忍高水平的缺失数据,并且能够在不受稀有微生物影响的情况下估计相互作用信息。对于每个相互作用网络,MetaMIS系统地检查相互作用模式(如互利共生或竞争),并完善微生物内部的生物作用。作为案例研究,我们收集了人类男性粪便微生物组,并表明一个相对低丰度的OTU——微球菌科,与13个优势OTU高度相连,似乎起着关键作用。MetaMIS能够将多个相互作用网络组织成一个共识网络用于比较研究;因此,作为案例研究,我们还确定了女性和男性粪便微生物组之间的一个共识相互作用网络。 结论:MetaMIS提供了一个高效且用户友好的平台,可能会揭示宏基因组学数据的新见解。MetaMIS可在以下网址免费获取:https://sourceforge.net/projects/metamis/ 。
BMC Bioinformatics. 2016-11-25
BMC Res Notes. 2015-9-26
BMC Bioinformatics. 2024-3-29
Bioinformatics. 2013-12-24
BMC Bioinformatics. 2016-7-29
Eng Microbiol. 2024-11-9
Genes (Basel). 2023-12-28
Front Bioinform. 2021-12-2
NPJ Syst Biol Appl. 2016-3-24
Science. 2015-11-6
BMC Syst Biol. 2015-9-4
PLoS Comput Biol. 2015-5-7
Appl Environ Microbiol. 2014-12
J Infect Dis. 2014-7-15
Front Microbiol. 2014-5-20
Proc Natl Acad Sci U S A. 2013-12-23