文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

MetaMIS:一种基于微生物群落概况的宏基因组微生物相互作用模拟器。

MetaMIS: a metagenomic microbial interaction simulator based on microbial community profiles.

作者信息

Shaw Grace Tzun-Wen, Pao Yueh-Yang, Wang Daryi

机构信息

Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan.

出版信息

BMC Bioinformatics. 2016 Nov 25;17(1):488. doi: 10.1186/s12859-016-1359-0.


DOI:10.1186/s12859-016-1359-0
PMID:27887570
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5124289/
Abstract

BACKGROUND: The complexity and dynamics of microbial communities are major factors in the ecology of a system. With the NGS technique, metagenomics data provides a new way to explore microbial interactions. Lotka-Volterra models, which have been widely used to infer animal interactions in dynamic systems, have recently been applied to the analysis of metagenomic data. RESULTS: In this paper, we present the Lotka-Volterra model based tool, the Metagenomic Microbial Interacticon Simulator (MetaMIS), which is designed to analyze the time series data of microbial community profiles. MetaMIS first infers underlying microbial interactions from abundance tables for operational taxonomic units (OTUs) and then interprets interaction networks using the Lotka-Volterra model. We also embed a Bray-Curtis dissimilarity method in MetaMIS in order to evaluate the similarity to biological reality. MetaMIS is designed to tolerate a high level of missing data, and can estimate interaction information without the influence of rare microbes. For each interaction network, MetaMIS systematically examines interaction patterns (such as mutualism or competition) and refines the biotic role within microbes. As a case study, we collect a human male fecal microbiome and show that Micrococcaceae, a relatively low abundance OTU, is highly connected with 13 dominant OTUs and seems to play a critical role. MetaMIS is able to organize multiple interaction networks into a consensus network for comparative studies; thus we as a case study have also identified a consensus interaction network between female and male fecal microbiomes. CONCLUSIONS: MetaMIS provides an efficient and user-friendly platform that may reveal new insights into metagenomics data. MetaMIS is freely available at: https://sourceforge.net/projects/metamis/ .

摘要

背景:微生物群落的复杂性和动态性是系统生态学的主要因素。借助新一代测序(NGS)技术,宏基因组学数据为探索微生物相互作用提供了新途径。Lotka-Volterra模型已被广泛用于推断动态系统中的动物相互作用,最近也被应用于宏基因组学数据的分析。 结果:在本文中,我们展示了基于Lotka-Volterra模型的工具——宏基因组微生物相互作用模拟器(MetaMIS),其旨在分析微生物群落概况的时间序列数据。MetaMIS首先从操作分类单元(OTU)的丰度表中推断潜在的微生物相互作用,然后使用Lotka-Volterra模型解释相互作用网络。我们还在MetaMIS中嵌入了Bray-Curtis相异度方法,以评估与生物现实的相似性。MetaMIS旨在容忍高水平的缺失数据,并且能够在不受稀有微生物影响的情况下估计相互作用信息。对于每个相互作用网络,MetaMIS系统地检查相互作用模式(如互利共生或竞争),并完善微生物内部的生物作用。作为案例研究,我们收集了人类男性粪便微生物组,并表明一个相对低丰度的OTU——微球菌科,与13个优势OTU高度相连,似乎起着关键作用。MetaMIS能够将多个相互作用网络组织成一个共识网络用于比较研究;因此,作为案例研究,我们还确定了女性和男性粪便微生物组之间的一个共识相互作用网络。 结论:MetaMIS提供了一个高效且用户友好的平台,可能会揭示宏基因组学数据的新见解。MetaMIS可在以下网址免费获取:https://sourceforge.net/projects/metamis/ 。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ae3/5124289/69321a4de03c/12859_2016_1359_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ae3/5124289/21a2b85a7597/12859_2016_1359_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ae3/5124289/2bc804d52e5c/12859_2016_1359_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ae3/5124289/46a34fefdd3f/12859_2016_1359_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ae3/5124289/45420c401605/12859_2016_1359_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ae3/5124289/69321a4de03c/12859_2016_1359_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ae3/5124289/21a2b85a7597/12859_2016_1359_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ae3/5124289/2bc804d52e5c/12859_2016_1359_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ae3/5124289/46a34fefdd3f/12859_2016_1359_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ae3/5124289/45420c401605/12859_2016_1359_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ae3/5124289/69321a4de03c/12859_2016_1359_Fig5_HTML.jpg

相似文献

[1]
MetaMIS: a metagenomic microbial interaction simulator based on microbial community profiles.

BMC Bioinformatics. 2016-11-25

[2]
Explore mediated co-varying dynamics in microbial community using integrated local similarity and liquid association analysis.

BMC Genomics. 2019-4-4

[3]
PanFP: pangenome-based functional profiles for microbial communities.

BMC Res Notes. 2015-9-26

[4]
Community-analyzer: a platform for visualizing and comparing microbial community structure across microbiomes.

Genomics. 2013-8-24

[5]
Towards a unified medical microbiome ecology of the OMU for metagenomes and the OTU for microbes.

BMC Bioinformatics. 2024-3-29

[6]
Phylogeny-based classification of microbial communities.

Bioinformatics. 2013-12-24

[7]
A network approach to investigating the key microbes and stability of gut microbial communities in a mouse neuropathic pain model.

BMC Microbiol. 2020-9-30

[8]
Identifying keystone species in the human gut microbiome from metagenomic timeseries using sparse linear regression.

PLoS One. 2014-7-23

[9]
RevEcoR: an R package for the reverse ecology analysis of microbiomes.

BMC Bioinformatics. 2016-7-29

[10]
Inferring Microbial Interactions in the Gut of the Hong Kong Whipping Frog () and a Validation Using Probiotics.

Front Microbiol. 2017-3-30

引用本文的文献

[1]
A survey of computational approaches for characterizing microbial interactions in microbial mats.

Genome Biol. 2025-6-16

[2]
Exploring interspecific interaction variability in microbiota: A review.

Eng Microbiol. 2024-11-9

[3]
The MTIST platform: a microbiome time series inference standardized test.

Res Sq. 2024-5-8

[4]
Formation of a constructed microbial community in a nutrient-rich environment indicates bacterial interspecific competition.

mSystems. 2024-4-16

[5]
Methodological Considerations in Longitudinal Analyses of Microbiome Data: A Comprehensive Review.

Genes (Basel). 2023-12-28

[6]
Microbiome distribution modeling using gradient descent strategies for mock, in vitro and clinical community distributions.

PLoS One. 2023

[7]
Exploring the Microbiome Analysis and Visualization Landscape.

Front Bioinform. 2021-12-2

[8]
Type 2 diabetes, gut microbiome, and systems biology: A novel perspective for a new era.

Gut Microbes. 2022

[9]
MicNet toolbox: Visualizing and unraveling a microbial network.

PLoS One. 2022

[10]
ARZIMM: A Novel Analytic Platform for the Inference of Microbial Interactions and Community Stability from Longitudinal Microbiome Study.

Front Genet. 2022-2-25

本文引用的文献

[1]
Dynamic models of the complex microbial metapopulation of lake mendota.

NPJ Syst Biol Appl. 2016-3-24

[2]
The ecology of the microbiome: Networks, competition, and stability.

Science. 2015-11-6

[3]
Inferring microbial interaction network from microbiome data using RMN algorithm.

BMC Syst Biol. 2015-9-4

[4]
Sparse and compositionally robust inference of microbial ecological networks.

PLoS Comput Biol. 2015-5-7

[5]
Dynamics of gut microbiota in autoimmune lupus.

Appl Environ Microbiol. 2014-12

[6]
Identifying keystone species in the human gut microbiome from metagenomic timeseries using sparse linear regression.

PLoS One. 2014-7-23

[7]
Biological differences between the sexes and susceptibility to tuberculosis.

J Infect Dis. 2014-7-15

[8]
Deciphering microbial interactions and detecting keystone species with co-occurrence networks.

Front Microbiol. 2014-5-20

[9]
CopyRighter: a rapid tool for improving the accuracy of microbial community profiles through lineage-specific gene copy number correction.

Microbiome. 2014-4-7

[10]
Mathematical modeling of primary succession of murine intestinal microbiota.

Proc Natl Acad Sci U S A. 2013-12-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索