Suppr超能文献

克服微型电泳输送装置中的传输限制。

Overcoming transport limitations in miniaturized electrophoretic delivery devices.

机构信息

Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 60174 Norrköping, Sweden.

出版信息

Lab Chip. 2019 Apr 9;19(8):1427-1435. doi: 10.1039/c9lc00038k.

Abstract

Organic electronic ion pumps (OEIPs) have been used for delivery of biological signaling compounds, at high spatiotemporal resolution, to a variety of biological targets. The miniaturization of this technology provides several advantages, ranging from better spatiotemporal control of delivery to reduced invasiveness for implanted OEIPs. One route to miniaturization is to develop OEIPs based on glass capillary fibers that are filled with a polyelectrolyte (cation exchange membrane, CEM). These devices can be easily inserted and brought into close proximity to targeted cells and tissues and could be considered as a starting point for other fiber-based OEIP and "iontronic" technologies enabling favorable implantable device geometries. While characterizing capillary OEIPs we observed deviations from the typical linear current-voltage behavior. Here we report a systematic investigation of these irregularities by performing experimental characterizations in combination with computational modelling. The cause of the observed irregularities is due to concentration polarization established at the OEIP inlet, which in turn causes electric field-enhanced water dissociation at the inlet. Water dissociation generates protons and is typically problematic for many applications. By adding an ion-selective cap that separates the inlet from the source reservoir this effect is then, to a large extent, suppressed. By increasing the surface area of the inlet with the addition of the cap, the concentration polarization is reduced which thereby allows for significantly higher delivery rates. These results demonstrate a useful approach to optimize transport and delivery of therapeutic substances at low concentrations via miniaturized electrophoretic delivery devices, thus considerably broadening the opportunities for implantable OEIP applications.

摘要

有机电子离子泵(OEIP)已被用于以高时空分辨率递送至各种生物靶标的生物信号化合物。该技术的小型化具有多种优势,包括对递送的更好时空控制以及对植入 OEIP 的侵入性降低。小型化的一种途径是基于填充有聚电解质(阳离子交换膜,CEM)的玻璃毛细管纤维来开发 OEIP。这些装置可以很容易地插入并与目标细胞和组织接近,可以被认为是其他基于纤维的 OEIP 和“离子电子”技术的起点,从而实现有利的可植入装置几何形状。在对毛细管 OEIP 进行特性分析时,我们观察到与典型线性电流-电压行为的偏差。在这里,我们通过进行实验特性分析与计算建模相结合,对这些不规则性进行了系统的研究。观察到的不规则性的原因是由于在 OEIP 入口处建立的浓度极化,这反过来又导致在入口处的电场增强的水离解。水离解产生质子,这在许多应用中通常是个问题。通过添加将入口与源储液器隔开的离子选择性帽,该效应在很大程度上被抑制。通过增加入口的表面积并添加帽,浓度极化被降低,从而允许显著更高的递送速率。这些结果表明了一种有用的方法,可以通过小型化电泳递药装置优化低浓度治疗物质的转运和递送,从而大大拓宽了可植入 OEIP 应用的机会。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验