Suppr超能文献

用于从水中去除染料的机械强度高的高通量氧化石墨烯-纳米纤维素膜。

Mechanically robust high flux graphene oxide - nanocellulose membranes for dye removal from water.

机构信息

Division of Materials and Environmental Chemistry, Stockholm University, Stockholm, 10691, Sweden.

Division of Materials and Environmental Chemistry, Stockholm University, Stockholm, 10691, Sweden.

出版信息

J Hazard Mater. 2019 Jun 5;371:484-493. doi: 10.1016/j.jhazmat.2019.03.009. Epub 2019 Mar 2.

Abstract

Ultrathin graphene oxide (GO) layer was fabricated on cellulose nanofiber (CNF) membrane to achieve robust crosslinker free layered membrane with synergistic water flux and separation performance. Unlike pristine cellulosic or GO membranes, GO-CNF hybrid membranes exhibited significantly improved mechanical stability in both dry and wet states. All membranes showed negative surface zeta potential. GO: CNF membrane (1:100) exhibited significantly high water flux (18,123 ± 574 Lm h bar); higher than that of CNF membrane or the hydrophilic commercial reference membrane with comparable pore structure (Nylon 66, 0.2 μm). We hypothyse that a unique surface structure of "standing inserted GO nanosheets" observed at low concentrations of GO contributes enormously to its ultrafast water permeability through creation of numerous water transport nanochannels. The aniosptropic layered membranes exhibited >90% rejection of positively and negatively charged dyes through a combination of electrostatic interaction, hydrophobic interactions and molecular size exclusion. Construction of an ultrathin GO layer on CNF offers a unique and efficient way to prepare highly functional, economical and scalable water purification membranes having significant advantage with respect to flux, mechanical stability and rejection of dyes compared to isotropic membrane with GO nanosheets randomly dispersed in the cellulose nanofibrous network.

摘要

在纤维素纳米纤维(CNF)膜上制备超薄氧化石墨烯(GO)层,以实现具有协同水通量和分离性能的坚固无交联剂层状膜。与原始纤维素或 GO 膜不同,GO-CNF 杂化膜在干燥和湿润状态下均表现出显著提高的机械稳定性。所有膜均表现出负表面 ζ 电位。GO:CNF 膜(1:100)表现出显著高的水通量(18123 ± 574 Lm h bar);高于具有可比孔结构(尼龙 66,0.2μm)的纤维素膜或亲水商业参考膜。我们假设在 GO 的低浓度下观察到的“直立插入的 GO 纳米片”的独特表面结构,通过形成大量水传输纳米通道,对其超快水渗透性有巨大贡献。各向异性层状膜通过静电相互作用、疏水相互作用和分子尺寸排阻,对正电荷和负电荷染料的截留率均>90%。在 CNF 上构建超薄 GO 层为制备具有超高通量、机械稳定性和染料截留率的高度功能性、经济且可扩展的水净化膜提供了一种独特而有效的方法,与在纤维素纳米纤维网络中随机分散有 GO 纳米片的各向同性膜相比,具有显著优势。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验