Suppr超能文献

Laser frequency locking and intensity normalization in wavelength modulation spectroscopy for sensitive gas sensing.

作者信息

Wang Guishi, Mei Jiaoxu, Tian Xing, Liu Kun, Tan Tu, Chen Weidong, Gao Xiaoming

出版信息

Opt Express. 2019 Feb 18;27(4):4878-4885. doi: 10.1364/OE.27.004878.

Abstract

A novel method for laser frequency locking and intensity normalization in wavelength modulation spectroscopy (WMS)-based gas sensor system is reported. The center spacing between two second harmonic peaks demodulated from the rising and falling edges of a scanning triangular wave (for wavelength scan) is employed as a frequency locking reference. Amplitude of the directly acquired sine signal (for wavelength modulation) in the spectral region far away from the absorption feature is employed as an intensity normalization reference. A 50 ppm CH:N sample sealed in a multi-pass cell at 1 atm was employed as the target analyte for demonstration. The frequency locking significantly improves measurement accuracy, and the introduced intensity normalization method realized a ~3 times SNR improvement as compared to the commonly used 1f normalization method under frequency locking conditions. A minimum measurement precision of ~2.5 ppbv was achieved with a normalized noise equivalent absorption coefficient of 1.8 × 10 cmHz.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验