Suppr超能文献

基于大规模数据集和ISSA-BP神经网络的激光甲烷传感器温度补偿

Temperature Compensation of Laser Methane Sensor Based on a Large-Scale Dataset and the ISSA-BP Neural Network.

作者信息

Yin Songfeng, Zou Xiang, Cheng Yue, Liu Yunlong

机构信息

School of Electronics and Information Engineering, Anhui Jianzhu University, Hefei 230601, China.

Hefei Institute for Public Security, Tsinghua University, Hefei 230601, China.

出版信息

Sensors (Basel). 2024 Jan 12;24(2):493. doi: 10.3390/s24020493.

Abstract

We aimed to improve the detection accuracy of laser methane sensors in expansive temperature application environments. In this paper, a large-scale dataset of the measured concentration of the sensor at different temperatures is established, and a temperature compensation model based on the ISSA-BP neural network is proposed. On the data side, a large-scale dataset of 15,810 sets of laser methane sensors with different temperatures and concentrations was established, and an Improved Isolation Forest algorithm was used to clean the large-scale data and remove the outliers in the dataset. On the modeling framework, a temperature compensation model based on the ISSA-BP neural network is proposed. The quasi-reflective learning, chameleon swarm algorithm, Lévy flight, and artificial rabbits optimization are utilized to improve the initialization of the sparrow population, explorer position, anti-predator position, and position of individual sparrows in each generation, respectively, to improve the global optimization seeking ability of the standard sparrow search algorithm. The ISSA-BP temperature compensation model far outperforms the four models, SVM, RF, BP, and PSO-BP, in model evaluation metrics such as MAE, MAPE, RMSE, and R-square for both the training and test sets. The results show that the algorithm in this paper can significantly improve the detection accuracy of the laser methane sensor under the wide temperature application environment.

摘要

我们旨在提高激光甲烷传感器在宽温度应用环境中的检测精度。本文建立了一个包含传感器在不同温度下测量浓度的大规模数据集,并提出了一种基于改进的麻雀搜索算法(ISSA)-反向传播(BP)神经网络的温度补偿模型。在数据方面,建立了一个包含15810组不同温度和浓度的激光甲烷传感器的大规模数据集,并使用改进的孤立森林算法对大规模数据进行清洗,去除数据集中的异常值。在建模框架方面,提出了一种基于ISSA-BP神经网络的温度补偿模型。分别利用拟反射学习、变色龙群算法、莱维飞行和人工兔优化来改进麻雀种群的初始化、探索者位置、反捕食者位置以及每一代中单个麻雀的位置,以提高标准麻雀搜索算法的全局优化搜索能力。在训练集和测试集的平均绝对误差(MAE)、平均绝对百分比误差(MAPE)、均方根误差(RMSE)和决定系数(R平方)等模型评估指标中,ISSA-BP温度补偿模型远优于支持向量机(SVM)、随机森林(RF)、BP和粒子群优化(PSO)-BP这四种模型。结果表明,本文提出的算法能够显著提高宽温度应用环境下激光甲烷传感器的检测精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e4e/10819906/860f886f710b/sensors-24-00493-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验