Suppr超能文献

用于光学相干断层扫描的施瓦兹希尔德扫描物镜的理论与设计

Theory and design of Schwarzschild scan objective for Optical Coherence Tomography.

作者信息

Lan Gongpu, Twa Michael D

出版信息

Opt Express. 2019 Feb 18;27(4):5048-5064. doi: 10.1364/OE.27.005048.

Abstract

Optical coherence elastography (OCE) is one form of multi-channel imaging that combines high-resolution optical coherence tomography (OCT) imaging with mechanical tissue stimulation. This combination of structural and functional imaging can require additional space to integrate imaging capabilities with additional functional elements (e.g., optical, mechanical, or acoustic modulators) either at or near the imaging axis. We address this challenge by designing a novel scan lens based on a modified Schwarzchild objective lens, comprised of a pair of concentric mirrors with potential space to incorporate additional functional elements and minimal compromise to the available scan field. This scan objective design allows perpendicular tissue-excitation and response recording. The optimized scan lens design results in a working distance that is extended to ~140 mm (nearly 2x the focal length), an expanded central space suitable for additional functional elements (>15 mm in diameter) and diffraction-limited lateral resolution (19.33 μm) across a full annular scan field ~ ± 7.5 mm to ± 12.7 mm.

摘要

光学相干弹性成像(OCE)是多通道成像的一种形式,它将高分辨率光学相干断层扫描(OCT)成像与机械组织刺激相结合。这种结构和功能成像的结合可能需要额外的空间,以便在成像轴处或其附近将成像能力与额外的功能元件(例如光学、机械或声学调制器)集成在一起。我们通过设计一种基于改进的施瓦兹希尔德物镜的新型扫描透镜来应对这一挑战,该物镜由一对同心镜组成,具有可容纳额外功能元件的潜在空间,并且对可用扫描场的影响最小。这种扫描物镜设计允许进行垂直组织激发和响应记录。优化后的扫描透镜设计使工作距离延长至约140毫米(近焦距的2倍),有一个适合额外功能元件的扩大的中心空间(直径>15毫米),并且在整个环形扫描场约±7.5毫米至±12.7毫米范围内具有衍射极限横向分辨率(19.33微米)。

相似文献

1
Theory and design of Schwarzschild scan objective for Optical Coherence Tomography.
Opt Express. 2019 Feb 18;27(4):5048-5064. doi: 10.1364/OE.27.005048.
2
3
Optical coherence elastography in ophthalmology.
J Biomed Opt. 2017 Dec;22(12):1-28. doi: 10.1117/1.JBO.22.12.121720.
4
Reverberant optical coherence elastography using multifocal acoustic radiation force.
Opt Lett. 2023 Jun 1;48(11):2773-2776. doi: 10.1364/OL.482201.
6
Development of novel imaging probe for optical/acoustic radiation imaging (OARI).
Med Phys. 2013 Nov;40(11):111910. doi: 10.1118/1.4824149.
7
Digital image correlation-based optical coherence elastography.
J Biomed Opt. 2013 Dec;18(12):121515. doi: 10.1117/1.JBO.18.12.121515.
8
Adaptive Doppler analysis for robust handheld optical coherence elastography.
Proc SPIE Int Soc Opt Eng. 2019 Feb;10880. doi: 10.1117/12.2503809. Epub 2019 Feb 21.

引用本文的文献

1
The COMIX polarimeter: a compact device for XUV polarization analysis.
J Synchrotron Radiat. 2022 Jul 1;29(Pt 4):969-977. doi: 10.1107/S1600577522004027. Epub 2022 May 19.
2
Customized eye modeling for optical quality assessment in myopic femto-LASIK surgery.
Sci Rep. 2021 Aug 6;11(1):16049. doi: 10.1038/s41598-021-95730-z.
4
Clinical Corneal Optical Coherence Elastography Measurement Precision: Effect of Heartbeat and Respiration.
Transl Vis Sci Technol. 2020 Apr 9;9(5):3. doi: 10.1167/tvst.9.5.3. eCollection 2020 Apr.
5
Characterization of natural frequencies from nanoscale tissue oscillations using dynamic optical coherence elastography.
Biomed Opt Express. 2020 May 26;11(6):3301-3318. doi: 10.1364/BOE.391324. eCollection 2020 Jun 1.

本文引用的文献

1
A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity.
Laser Phys Lett. 2013;10(7). doi: 10.1088/1612-2011/10/7/075605. Epub 2013 May 20.
2
Effects of Thickness on Corneal Biomechanical Properties Using Optical Coherence Elastography.
Optom Vis Sci. 2018 Apr;95(4):299-308. doi: 10.1097/OPX.0000000000001193.
3
Common-path phase-sensitive optical coherence tomography provides enhanced phase stability and detection sensitivity for dynamic elastography.
Biomed Opt Express. 2017 Oct 26;8(11):5253-5266. doi: 10.1364/BOE.8.005253. eCollection 2017 Nov 1.
4
Noncontact Elastic Wave Imaging Optical Coherence Elastography for Evaluating Changes in Corneal Elasticity Due to Crosslinking.
IEEE J Sel Top Quantum Electron. 2016 May-Jun;22(3). doi: 10.1109/JSTQE.2015.2510293. Epub 2015 Dec 17.
7
Observation of sound-induced corneal vibrational modes by optical coherence tomography.
Biomed Opt Express. 2015 Aug 11;6(9):3313-9. doi: 10.1364/BOE.6.003313. eCollection 2015 Sep 1.
10
Spatial characterization of corneal biomechanical properties with optical coherence elastography after UV cross-linking.
Biomed Opt Express. 2014 Apr 4;5(5):1419-27. doi: 10.1364/BOE.5.001419. eCollection 2014 May 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验