Suppr超能文献

酵母表观遗传学:组蛋白修饰状态的遗传。

Yeast epigenetics: the inheritance of histone modification states.

机构信息

School of Biological Sciences, Queen's University Belfast, Belfast, U.K.

出版信息

Biosci Rep. 2019 May 7;39(5). doi: 10.1042/BSR20182006. Print 2019 May 31.

Abstract

(budding yeast) and (fission yeast) are two of the most recognised and well-studied model systems for epigenetic regulation and the inheritance of chromatin states. Their silent loci serve as a proxy for heterochromatic chromatin in higher eukaryotes, and as such both species have provided a wealth of information on the mechanisms behind the establishment and maintenance of epigenetic states, not only in yeast, but in higher eukaryotes. This review focuses specifically on the role of histone modifications in governing telomeric silencing in and centromeric silencing in as examples of genetic loci that exemplify epigenetic inheritance. We discuss the recent advancements that for the first time provide a mechanistic understanding of how heterochromatin, dictated by histone modifications specifically, is preserved during S-phase. We also discuss the current state of our understanding of yeast nucleosome dynamics during DNA replication, an essential component in delineating the contribution of histone modifications to epigenetic inheritance.

摘要

(芽殖酵母)和(裂殖酵母)是两种最受认可和研究最多的表观遗传调控和染色质状态遗传模型系统。它们的沉默基因座可以作为真核生物异染色质染色质的代表,因此这两个物种不仅为酵母,而且为真核生物中表观遗传状态建立和维持的机制提供了丰富的信息。本综述特别关注组蛋白修饰在调控 端粒沉默和 着丝粒沉默中的作用,这些基因座是体现表观遗传遗传的遗传基因座的例子。我们讨论了最近的进展,这些进展首次提供了对组蛋白修饰特异地决定的异染色质如何在 S 期得到保存的机制理解。我们还讨论了我们目前对酵母核小体动力学在 DNA 复制过程中的理解,这是描述组蛋白修饰对表观遗传遗传贡献的一个重要组成部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1a7/6504666/c6985d9c9863/bsr-39-bsr20182006-g1.jpg

相似文献

1
Yeast epigenetics: the inheritance of histone modification states.
Biosci Rep. 2019 May 7;39(5). doi: 10.1042/BSR20182006. Print 2019 May 31.
2
Ccp1 modulates epigenetic stability at centromeres and affects heterochromatin distribution in .
J Biol Chem. 2018 Aug 3;293(31):12068-12080. doi: 10.1074/jbc.RA118.003873. Epub 2018 Jun 13.
3
4
The interplay of histone H2B ubiquitination with budding and fission yeast heterochromatin.
Curr Genet. 2018 Aug;64(4):799-806. doi: 10.1007/s00294-018-0812-1. Epub 2018 Feb 20.
5
SNF2 Family Protein Fft3 Suppresses Nucleosome Turnover to Promote Epigenetic Inheritance and Proper Replication.
Mol Cell. 2017 Apr 6;66(1):50-62.e6. doi: 10.1016/j.molcel.2017.02.006. Epub 2017 Mar 16.
6
Transcriptional silencing in Saccharomyces cerevisiae and Schizosaccharomyces pombe.
Nucleic Acids Res. 2002 Apr 1;30(7):1465-82. doi: 10.1093/nar/30.7.1465.
7
RNA and epigenetic silencing: insight from fission yeast.
Dev Growth Differ. 2012 Jan;54(1):129-41. doi: 10.1111/j.1440-169X.2011.01310.x. Epub 2011 Dec 12.
8
Epigenetic Regulation of Chromatin States in Schizosaccharomyces pombe.
Cold Spring Harb Perspect Biol. 2015 Jul 1;7(7):a018770. doi: 10.1101/cshperspect.a018770.
9
Mechanisms of gene regulation by histone degradation in adaptation of yeast: an overview of recent advances.
Arch Microbiol. 2022 Apr 28;204(5):287. doi: 10.1007/s00203-022-02897-8.
10
Dare to challenge the silence? Telomeric gene silencing revisited.
Nucleus. 2011 Nov-Dec;2(6):513-6. doi: 10.4161/nucl.2.6.17710. Epub 2011 Nov 1.

引用本文的文献

3
Transcriptional silencing in Saccharomyces cerevisiae: known unknowns.
Epigenetics Chromatin. 2024 Sep 14;17(1):28. doi: 10.1186/s13072-024-00553-7.
4
Understanding the molecular mechanisms of human diseases: the benefits of fission yeasts.
Microb Cell. 2024 Aug 2;11:288-311. doi: 10.15698/mic2024.08.833. eCollection 2024.
5
What are the 100 most cited fungal genera?
Stud Mycol. 2024 Jul;108:1-411. doi: 10.3114/sim.2024.108.01. Epub 2024 Jul 15.
7
Antimicrobial resistance in the wild: Insights from epigenetics.
Evol Appl. 2024 May 29;17(6):e13707. doi: 10.1111/eva.13707. eCollection 2024 Jun.
8
Mathematical model for the role of multiple pericentromeric repeats on heterochromatin assembly.
PLoS Comput Biol. 2024 Apr 10;20(4):e1012027. doi: 10.1371/journal.pcbi.1012027. eCollection 2024 Apr.
9
Inheritance of Stress Responses via Small Non-Coding RNAs in Invertebrates and Mammals.
Epigenomes. 2023 Dec 19;8(1):1. doi: 10.3390/epigenomes8010001.
10
MIL-CELL: a tool for multi-scale simulation of yeast replication and prion transmission.
Eur Biophys J. 2023 Nov;52(8):673-704. doi: 10.1007/s00249-023-01679-4. Epub 2023 Sep 5.

本文引用的文献

1
Unique roles for histone H3K9me states in RNAi and heritable silencing of transcription.
Nature. 2017 Jul 27;547(7664):463-467. doi: 10.1038/nature23267. Epub 2017 Jun 22.
2
SNF2 Family Protein Fft3 Suppresses Nucleosome Turnover to Promote Epigenetic Inheritance and Proper Replication.
Mol Cell. 2017 Apr 6;66(1):50-62.e6. doi: 10.1016/j.molcel.2017.02.006. Epub 2017 Mar 16.
3
Chromatin dynamics during DNA replication.
Genome Res. 2016 Sep;26(9):1245-56. doi: 10.1101/gr.201244.115. Epub 2016 May 25.
4
The Fork in the Road: Histone Partitioning During DNA Replication.
Genes (Basel). 2015 Jun 23;6(2):353-71. doi: 10.3390/genes6020353.
5
Epigenetics. Restricted epigenetic inheritance of H3K9 methylation.
Science. 2015 Apr 3;348(6230):132-5. doi: 10.1126/science.1260638.
6
Epigenetics. Epigenetic inheritance uncoupled from sequence-specific recruitment.
Science. 2015 Apr 3;348(6230):1258699. doi: 10.1126/science.1258699. Epub 2014 Nov 20.
8
The Chromatin and Transcriptional Landscape of Native Saccharomyces cerevisiae Telomeres and Subtelomeric Domains.
Genetics. 2015 Jun;200(2):505-21. doi: 10.1534/genetics.115.175711. Epub 2015 Mar 30.
9
Breaking an epigenetic chromatin switch: curious features of hysteresis in Saccharomyces cerevisiae telomeric silencing.
PLoS One. 2014 Dec 23;9(12):e113516. doi: 10.1371/journal.pone.0113516. eCollection 2014.
10
Heat stress-induced Cup9-dependent transcriptional regulation of SIR2.
Mol Cell Biol. 2015 Jan;35(2):437-50. doi: 10.1128/MCB.01046-14. Epub 2014 Nov 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验