Suppr超能文献

TreS:Pep2 复合物的晶体结构,启动分枝杆菌 GlgE 途径中的α-葡聚糖合成。

Crystal structure of the TreS:Pep2 complex, initiating α-glucan synthesis in the GlgE pathway of mycobacteria.

机构信息

From the Institute of Microbiology & Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.

From the Institute of Microbiology & Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom

出版信息

J Biol Chem. 2019 May 3;294(18):7348-7359. doi: 10.1074/jbc.RA118.004297. Epub 2019 Mar 15.

Abstract

A growing body of evidence implicates the mycobacterial capsule, the outermost layer of the mycobacterial cell envelope, in modulation of the host immune response and virulence of mycobacteria. Mycobacteria synthesize the dominant capsule component, α(1→4)-linked glucan, via three interconnected and potentially redundant metabolic pathways. Here, we report the crystal structure of the TreS:Pep2 complex, containing trehalose synthase (TreS) and maltokinase (Pep2), which converts trehalose to maltose 1-phosphate as part of the TreS:Pep2-GlgE pathway. The structure, at 3.6 Å resolution, revealed that a diamond-shaped TreS tetramer forms the core of the complex and that pairs of Pep2 monomers bind to opposite apices of the tetramer in a 4 + 4 configuration. However, for the orthologues, results from isothermal titration calorimetry and analytical ultracentrifugation experiments indicated that the prevalent stoichiometry in solution is 4 TreS + 2 Pep2 protomers. The observed discrepancy between the crystallized complex and the behavior in the solution state may be explained by the relatively weak affinity of Pep2 for TreS ( 3.5 μm at mildly acidic pH) and crystal packing favoring the 4 + 4 complex. Proximity of the ATP-binding site in Pep2 to the complex interface provides a rational basis for rate enhancement of Pep2 upon binding to TreS, but the complex structure appears to rule out substrate channeling between the active sites of TreS and Pep2. Our findings provide a structural model for the trehalose synthase:maltokinase complex in that offers critical insights into capsule assembly.

摘要

越来越多的证据表明,分枝杆菌的荚膜(分枝杆菌细胞包膜的最外层)参与了宿主免疫反应的调节和分枝杆菌的毒力。分枝杆菌通过三个相互关联且潜在冗余的代谢途径合成主要的荚膜成分α(1→4)-连接的葡聚糖。在这里,我们报告了 TreS:Pep2 复合物的晶体结构,该复合物包含海藻糖合酶(TreS)和麦芽糖激酶(Pep2),它们将海藻糖转化为麦芽糖 1-磷酸,作为 TreS:Pep2-GlgE 途径的一部分。该结构分辨率为 3.6 Å,揭示了一个菱形的 TreS 四聚体形成复合物的核心,两对 Pep2 单体以 4 + 4 的形式结合在四聚体的相对顶点上。然而,对于同源物,等温滴定量热法和分析超速离心实验的结果表明,在溶液中的主要配位比为 4 TreS + 2 Pep2 前体。在结晶复合物和溶液状态下的行为之间观察到的差异可能可以通过 Pep2 与 TreS 的相对较弱的亲和力(在微酸性 pH 下为 3.5 μm)和有利于 4 + 4 复合物的晶体堆积来解释。Pep2 中的 ATP 结合位点与复合物界面的接近为 Pep2 结合 TreS 时的速率增强提供了合理的基础,但复合物结构似乎排除了 TreS 和 Pep2 的活性位点之间的底物通道化。我们的发现为提供了海藻糖合酶:麦芽糖激酶复合物的结构模型,为荚膜组装提供了重要的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6682/6509496/727038284f18/zbc0191905130001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验