Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA; Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI 53706, USA.
J Mol Biol. 2013 Nov 15;425(22):4267-85. doi: 10.1016/j.jmb.2013.05.030. Epub 2013 Jun 8.
The enzymatic degradation of cellulose is a critical step in the biological conversion of plant biomass into an abundant renewable energy source. An understanding of the structural and dynamic features that cellulases utilize to bind a single strand of crystalline cellulose and hydrolyze the β-1,4-glycosidic bonds of cellulose to produce fermentable sugars would greatly facilitate the engineering of improved cellulases for the large-scale conversion of plant biomass. Endoglucanase D (EngD) from Clostridium cellulovorans is a modular enzyme comprising an N-terminal catalytic domain and a C-terminal carbohydrate-binding module, which is attached via a flexible linker. Here, we present the 2.1-Å-resolution crystal structures of full-length EngD with and without cellotriose bound, solution small-angle X-ray scattering (SAXS) studies of the full-length enzyme, the characterization of the active cleft glucose binding subsites, and substrate specificity of EngD on soluble and insoluble polymeric carbohydrates. SAXS data support a model in which the linker is flexible, allowing EngD to adopt an extended conformation in solution. The cellotriose-bound EngD structure revealed an extended active-site cleft that contains seven glucose-binding subsites, but unlike the majority of structurally determined endocellulases, the active-site cleft of EngD is partially enclosed by Trp162 and Tyr232. EngD variants, which lack Trp162, showed a significant reduction in activity and an alteration in the distribution of cellohexaose degradation products, suggesting that Trp162 plays a direct role in substrate binding.
纤维素的酶促降解是将植物生物质转化为丰富的可再生能源的关键步骤。了解纤维素酶利用哪些结构和动态特征来结合纤维素的单链并水解纤维素的β-1,4-糖苷键以产生可发酵糖,将极大地促进改良纤维素酶的工程设计,以实现大规模的植物生物质转化。来自纤维梭菌的内切葡聚糖酶 D (EngD) 是一种模块化酶,由 N 端催化结构域和 C 端碳水化合物结合模块组成,通过柔性接头连接。在这里,我们展示了全长 EngD 与结合和未结合纤维三糖的 2.1 Å 分辨率晶体结构、全长酶的溶液小角 X 射线散射 (SAXS) 研究、活性裂缝葡萄糖结合亚基位的表征以及 EngD 在可溶性和不溶性聚合碳水化合物上的底物特异性。SAXS 数据支持这样一种模型,即接头是柔性的,允许 EngD 在溶液中采用扩展构象。结合纤维三糖的 EngD 结构揭示了一个扩展的活性位点裂缝,其中包含七个葡萄糖结合亚基位,但与大多数结构确定的内切纤维素酶不同,EngD 的活性位点裂缝部分被色氨酸 162 和酪氨酸 232 封闭。缺乏色氨酸 162 的 EngD 变体显示出活性显著降低和纤维六糖降解产物分布的改变,这表明色氨酸 162 在底物结合中发挥直接作用。