Suppr超能文献

基于自适应果蝇的改进区域生长算法,结合最优神经网络实现心脏脂肪分割。

Adaptive Fruitfly Based Modified Region Growing Algorithm for Cardiac Fat Segmentation Using Optimal Neural Network.

机构信息

Department of ECE, Syed Ammal Engineering College, Landhai, India.

Department of ECE, Easwari Engineering College, Chennai, India.

出版信息

J Med Syst. 2019 Mar 15;43(5):104. doi: 10.1007/s10916-019-1227-3.

Abstract

Epicardial adipose tissue is a visceral fat that has remained an entity of concern for decades owing to its high correlation with coronary heart disease. It continues to stump medical practitioners on the pretext of its relevance with pericardial fat and its dependence on a numerous other parameters including ethnicity and physique of an individual. This calls for a fool-proof algorithm that promises accurate classification and segmentation, hence an immaculate prediction. CT is immensely popular and widely preferred for diagnosis. Implementation of an improvised algorithm in CT would be a natural necessity. This research work proposes a Fruitfly Algorithm based Modified region growing algorithm is applied to the acquired CT images to segment fat accurately. The proposed methodology promises image registration and classification in order to segment two cardiac fats namely epicardial, pericardial and mediastinal. The main contributions are (1) Fat feature extraction: Construction of GLCM features CT image (2) Development of GWO based optimal neural network for classification; (3) Modeling the fat segmentation using modified region growing algorithm with Fruitfly optimization. The entire experimentation has been implemented in MATLAB simulation environment and final result is expected to flaunt a definite distinction between cardiac mediastinal and epicardial fats. Parallely, the accuracy, sensitivity, specificity, FPR and FNR have been stated and contrasted methodically with the existing methodology. This venture aims at spurring the healthcare industry towards smarter computational techniques that multiplies efficiency manifold.

摘要

心外膜脂肪组织是一种内脏脂肪,由于其与冠心病的高度相关性,几十年来一直是人们关注的焦点。由于其与心包脂肪的相关性及其对包括种族和个体体型在内的众多其他参数的依赖性,它仍然让医学从业者感到困惑。这就需要一个万无一失的算法,以保证准确的分类和分割,从而实现完美的预测。CT 因其在诊断中的广泛应用而广受欢迎。在 CT 中实现改进的算法是必然的。这项研究工作提出了一种基于果蝇算法的改进区域生长算法,用于对获取的 CT 图像进行准确的脂肪分割。所提出的方法学承诺进行图像配准和分类,以便分割两种心脏脂肪,即心外膜脂肪、心包脂肪和纵隔脂肪。主要贡献有:(1)脂肪特征提取:构建 CT 图像的 GLCM 特征;(2)基于 GWO 的最优神经网络的开发,用于分类;(3)使用果蝇优化的改进区域生长算法对脂肪分割进行建模。整个实验都在 MATLAB 仿真环境中实现,最终结果预计将在心外膜和纵隔脂肪之间形成明确的区别。同时,还系统地陈述了准确性、灵敏度、特异性、FPR 和 FNR,并与现有方法进行了对比。这项研究旨在推动医疗保健行业采用更智能的计算技术,从而使效率成倍数提高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验