Suppr超能文献

多视图勾画磁共振成像中的乳腺肿瘤。

Multiview Contouring for Breast Tumor on Magnetic Resonance Imaging.

机构信息

Breast Cancer Center, Changhua Christian Hospital, Changhua, Taiwan.

Department of Computer Science, Tunghai University, Taichung, Taiwan.

出版信息

J Digit Imaging. 2019 Oct;32(5):713-727. doi: 10.1007/s10278-019-00190-7.

Abstract

The shape and contour of the lesion are shown to be effective features for physicians to identify breast tumor as benign or malignant. The region of the lesion is usually manually created by the physician according to their clinical experience; therefore, contouring tumors on breast magnetic resonance imaging (MRI) is difficult and time-consuming. For this purpose, an automatic contouring method for breast tumors was developed for less burden in the analysis and to decrease the observed bias to help in making decisions clinically. In this study, a multiview segmentation method for detecting and contouring breast tumors in MRI was represented. The preprocessing of the proposed method reduces any amount of noises but preserves the shape and contrast of the breast tumor. The two-dimensional (2D) level-set segmentation method extracts contours of breast tumors from the transverse, coronal, and sagittal planes. The obtained contours are further utilized to generate appropriate three-dimensional (3D) contours. Twenty breast tumor cases were evaluated and the simulation results show that the proposed contouring method was an efficient method for delineating 3D contours of breast tumors in MRI.

摘要

病变的形状和轮廓被证明是医生识别乳腺肿瘤良性或恶性的有效特征。病变区域通常是根据医生的临床经验手动创建的;因此,对乳腺磁共振成像 (MRI) 中的肿瘤进行轮廓绘制既困难又耗时。为此,开发了一种用于乳腺肿瘤的自动轮廓绘制方法,以减轻分析负担并减少观察到的偏差,从而有助于临床决策。在这项研究中,提出了一种用于在 MRI 中检测和勾勒乳腺肿瘤的多视图分割方法。该方法的预处理减少了任何数量的噪声,但保留了乳腺肿瘤的形状和对比度。二维 (2D) 水平集分割方法从横断、冠状和矢状平面提取乳腺肿瘤的轮廓。获得的轮廓进一步用于生成适当的三维 (3D) 轮廓。对 20 例乳腺肿瘤病例进行了评估,模拟结果表明,所提出的轮廓绘制方法是一种有效的方法,可用于描绘 MRI 中乳腺肿瘤的 3D 轮廓。

相似文献

1
Multiview Contouring for Breast Tumor on Magnetic Resonance Imaging.
J Digit Imaging. 2019 Oct;32(5):713-727. doi: 10.1007/s10278-019-00190-7.
2
Level set contouring for breast tumor in sonography.
J Digit Imaging. 2007 Sep;20(3):238-47. doi: 10.1007/s10278-006-1041-6.
3
Three-dimensional region-based segmentation for breast tumors on sonography.
J Ultrasound Med. 2013 May;32(5):835-46. doi: 10.7863/ultra.32.5.835.
4
Watershed segmentation for breast tumor in 2-D sonography.
Ultrasound Med Biol. 2004 May;30(5):625-32. doi: 10.1016/j.ultrasmedbio.2003.12.001.
5
Multistage processing procedure for 4D breast MRI segmentation.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:3036-9. doi: 10.1109/IEMBS.2008.4649843.
6
3D Shape-Weighted Level Set Method for Breast MRI 3D Tumor Segmentation.
J Healthc Eng. 2018 Jun 13;2018:7097498. doi: 10.1155/2018/7097498. eCollection 2018.
8
Breast DCE-MRI radiomics: a robust computer-aided system based on reproducible BI-RADS features across the influence of datasets bias and segmentation methods.
Int J Comput Assist Radiol Surg. 2020 Jun;15(6):921-930. doi: 10.1007/s11548-020-02177-0. Epub 2020 May 9.
9
Editorial for "3D Breast Cancer Segmentation in DCE-MRI Using Deep Learning With Weak Annotation".
J Magn Reson Imaging. 2024 Jun;59(6):2263-2264. doi: 10.1002/jmri.28957. Epub 2023 Aug 14.

引用本文的文献

1
A Noise-robust and Overshoot-free Alternative to Unsharp Masking for Enhancing the Acuity of MR Images.
J Digit Imaging. 2022 Aug;35(4):1041-1060. doi: 10.1007/s10278-022-00585-z. Epub 2022 Mar 16.

本文引用的文献

1
3D Shape-Weighted Level Set Method for Breast MRI 3D Tumor Segmentation.
J Healthc Eng. 2018 Jun 13;2018:7097498. doi: 10.1155/2018/7097498. eCollection 2018.
2
Developments in Breast Imaging: Update on New and Evolving MR Imaging and Molecular Imaging Techniques.
Magn Reson Imaging Clin N Am. 2018 May;26(2):247-258. doi: 10.1016/j.mric.2017.12.003. Epub 2018 Feb 21.
3
Role of MR Imaging for the Locoregional Staging of Breast Cancer.
Magn Reson Imaging Clin N Am. 2018 May;26(2):191-205. doi: 10.1016/j.mric.2017.12.008. Epub 2018 Feb 21.
5
Recall Rate Benchmark for Screening Breast MR Imaging in Community Practice.
Radiology. 2018 Feb;286(2):728-729. doi: 10.1148/radiol.2017172354.
6
Three-dimensional region-based segmentation for breast tumors on sonography.
J Ultrasound Med. 2013 May;32(5):835-46. doi: 10.7863/ultra.32.5.835.
7
A computational approach to edge detection.
IEEE Trans Pattern Anal Mach Intell. 1986 Jun;8(6):679-98.
8
A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI.
IEEE Trans Image Process. 2011 Jul;20(7):2007-16. doi: 10.1109/TIP.2011.2146190. Epub 2011 Apr 21.
9
Distance regularized level set evolution and its application to image segmentation.
IEEE Trans Image Process. 2010 Dec;19(12):3243-54. doi: 10.1109/TIP.2010.2069690. Epub 2010 Aug 26.
10
Diagnostic breast MR imaging: current status and future directions.
Magn Reson Imaging Clin N Am. 2010 Feb;18(1):57-74. doi: 10.1016/j.mric.2009.09.005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验