Suppr超能文献

基于三维形状加权水平集方法的乳腺 MRI 三维肿瘤分割。

3D Shape-Weighted Level Set Method for Breast MRI 3D Tumor Segmentation.

机构信息

Department of Computer Science and Information Engineering, National Chin Yi University of Technology, Taichung 41170, Taiwan.

Department of Interaction Design, Chang Jung Christian University, Tainan 71101, Taiwan.

出版信息

J Healthc Eng. 2018 Jun 13;2018:7097498. doi: 10.1155/2018/7097498. eCollection 2018.

Abstract

Three-dimensional (3D) medical image segmentation is used to segment the target (a lesion or an organ) in 3D medical images. Through this process, 3D target information is obtained; hence, this technology is an important auxiliary tool for medical diagnosis. Although some methods have proved to be successful for two-dimensional (2D) image segmentation, their direct use in the 3D case has been unsatisfactory. To obtain more precise tumor segmentation results from 3D MR images, in this paper, we propose a method known as the 3D shape-weighted level set method (3D-SLSM). The proposed method first converts the LSM, which is superior with respect to 2D image segmentation, into a 3D algorithm that is suitable for overall calculations in 3D image models, and which improves the efficiency and accuracy of calculations. A 3D shape-weighted value is then added for each 3D-SLSM iterative process according to the changes in volume. Besides increasing the convergence rate and eliminating background noise, this shape-weighted value also brings the segmented contour closer to the actual tumor margins. To perform a quantitative analysis of 3D-SLSM and to examine its feasibility in clinical applications, we have divided our experiments into computer-simulated sequence images and actual breast MRI cases. Subsequently, we simultaneously compared various existing 3D segmentation methods. The experimental results demonstrated that 3D-SLSM exhibited precise segmentation results for both types of experimental images. In addition, 3D-SLSM showed better results for quantitative data compared with existing 3D segmentation methods.

摘要

三维(3D)医学图像分割用于分割 3D 医学图像中的目标(病变或器官)。通过这个过程,可以获得 3D 目标信息;因此,这项技术是医学诊断的重要辅助工具。虽然一些方法已经被证明在二维(2D)图像分割中是成功的,但它们在 3D 情况下的直接应用并不令人满意。为了从 3D MR 图像中获得更精确的肿瘤分割结果,在本文中,我们提出了一种称为三维形状加权水平集方法(3D-SLSM)的方法。所提出的方法首先将在 2D 图像分割方面表现出色的 LSM 转换为适用于 3D 图像模型整体计算的 3D 算法,从而提高了计算的效率和准确性。然后,根据体积的变化,为每个 3D-SLSM 迭代过程添加一个 3D 形状加权值。除了提高收敛速度和消除背景噪声外,该形状加权值还使分割轮廓更接近实际肿瘤边界。为了对 3D-SLSM 进行定量分析并检验其在临床应用中的可行性,我们将实验分为计算机模拟序列图像和实际乳腺 MRI 病例。然后,我们同时比较了各种现有的 3D 分割方法。实验结果表明,3D-SLSM 对两种类型的实验图像都具有精确的分割结果。此外,3D-SLSM 在定量数据方面的表现优于现有的 3D 分割方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f9a/6020458/e02dcf5d4083/JHE2018-7097498.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验