Suppr超能文献

协方差保险筛查

Covariance-Insured Screening.

作者信息

He Kevin, Kang Jian, Hong Hyokyoung G, Zhu Ji, Li Yanming, Lin Huazhen, Xu Han, Li Yi

机构信息

Department of Biostatistics, School of Public Health, University of Michigan.

Department of Statistics and Probability, Michigan State University.

出版信息

Comput Stat Data Anal. 2019 Apr;132:100-114. doi: 10.1016/j.csda.2018.09.001. Epub 2018 Sep 22.

Abstract

Modern bio-technologies have produced a vast amount of high-throughput data with the number of predictors far greater than the sample size. In order to identify more novel biomarkers and understand biological mechanisms, it is vital to detect signals weakly associated with outcomes among ultrahigh-dimensional predictors. However, existing screening methods, which typically ignore correlation information, are likely to miss weak signals. By incorporating the inter-feature dependence, a covariance-insured screening approach is proposed to identify predictors that are jointly informative but marginally weakly associated with outcomes. The validity of the method is examined via extensive simulations and a real data study for selecting potential genetic factors related to the onset of multiple myeloma.

摘要

现代生物技术产生了大量高通量数据,预测变量的数量远远超过样本量。为了识别更多新颖的生物标志物并理解生物学机制,在超高维预测变量中检测与结果弱相关的信号至关重要。然而,现有的筛选方法通常忽略相关性信息,很可能会遗漏弱信号。通过纳入特征间的依赖性,提出了一种协方差保障筛选方法,以识别那些共同提供信息但与结果边际弱相关的预测变量。通过广泛的模拟和一项用于选择与多发性骨髓瘤发病相关潜在遗传因素的真实数据研究,检验了该方法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d70/6414211/106cb327926b/nihms-1015625-f0001.jpg

相似文献

1
Covariance-Insured Screening.协方差保险筛查
Comput Stat Data Anal. 2019 Apr;132:100-114. doi: 10.1016/j.csda.2018.09.001. Epub 2018 Sep 22.
2
Weak signals in high-dimension regression: detection, estimation and prediction.高维回归中的弱信号:检测、估计与预测。
Appl Stoch Models Bus Ind. 2019 Mar-Apr;35(2):283-298. doi: 10.1002/asmb.2340. Epub 2018 May 25.
6
Conditional screening for ultra-high dimensional covariates with survival outcomes.基于生存结局的超高维协变量条件筛选
Lifetime Data Anal. 2018 Jan;24(1):45-71. doi: 10.1007/s10985-016-9387-7. Epub 2016 Dec 8.
7
A selective overview of feature screening for ultrahigh-dimensional data.超高维数据特征筛选的选择性概述。
Sci China Math. 2015 Oct;58(10):2033-2054. doi: 10.1007/s11425-015-5062-9. Epub 2015 Aug 22.
9
Variable screening via quantile partial correlation.通过分位数偏相关进行变量筛选。
J Am Stat Assoc. 2017;112(518):650-663. doi: 10.1080/01621459.2016.1156545. Epub 2017 Mar 30.

本文引用的文献

4
ppcor: An R Package for a Fast Calculation to Semi-partial Correlation Coefficients.ppcor:一个用于快速计算半偏相关系数的R软件包。
Commun Stat Appl Methods. 2015 Nov;22(6):665-674. doi: 10.5351/CSAM.2015.22.6.665. Epub 2015 Nov 30.
6
Approximately independent linkage disequilibrium blocks in human populations.人类群体中近似独立的连锁不平衡区域。
Bioinformatics. 2016 Jan 15;32(2):283-5. doi: 10.1093/bioinformatics/btv546. Epub 2015 Sep 22.
8
Score test variable screening.计分检验变量筛选
Biometrics. 2014 Dec;70(4):862-71. doi: 10.1111/biom.12209. Epub 2014 Aug 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验