Suppr超能文献

来自二维快照粒子图像测速技术的压力。

Pressure from 2D snapshot PIV.

作者信息

Van der Kindere J W, Laskari A, Ganapathisubramani B, de Kat R

机构信息

1Department of Aeronautics and Astronautics, University of Southampton, Southampton, SO17 1BJ UK.

2Present Address: GALCIT, California Institute of Technology, Pasadena, CA 91125 USA.

出版信息

Exp Fluids. 2019;60(2):32. doi: 10.1007/s00348-019-2678-5. Epub 2019 Jan 25.

Abstract

ABSTRACT

In this study, we quantify the accuracy of a simple pressure estimation method from 2D snapshot PIV in attached and separated flows. Particle image velocimetry (PIV) offers the possibility to acquire a field of pressure instead of point measurements. Multiple methods may be used to obtain pressure from PIV measurements, however, the current state-of-the-art requires expensive equipment and data processing. As an alternative, we aim to quantify the efficacy of estimating instantaneous pressure from snapshot (non-time resolved) two-dimensional planar PIV (the simplest type of PIV available). To make up for the loss of temporal information, we rely on Taylor's hypothesis (TH) to replace temporal information with spatial gradients. Application of our approach to high-resolution 2D velocity data of a turbulent boundary layer flow over ribs shows moderate to good agreement with reference pressure measurements in average and fluctuations. To assess the performance of the 2D TH method beyond average and fluctuation statistics, we acquired a time-resolved measurement of the same flow and determined temporal correlation values of the pressure from our method with reference measurements. Overall, the correlation attains good values for all measured locations. For comparison, we also applied two time-resolved approaches, which attained values of correlation similar to our approach. The performance of the 2D TH method is further assessed on 3D time-resolved velocity data for a turbulent boundary layer and compared with 3D methods. The root-mean-square (RMS) pressure fluctuations of the 2D TH, 3D TH and 3D pseudo-Lagrangian methods closely follow the pressure fluctuation distribution from DNS. These observations on the RMS pressure estimates are further supported by similar analysis on synthetic PIV data (based on DNS) of a turbulent channel flow. The values of spatial correlation between the 2D TH method and the DNS pressure fields in this case, are similar to the temporal correlations achieved in the turbulent flow over the ribs. Finally, we discuss the accuracy of instantaneous pressure estimates and provide a rule of thumb to determine regions where the pressure fluctuation estimate from the 2D TH methods is likely to fail.

摘要

摘要

在本研究中,我们对一种从二维快照粒子图像测速技术(PIV)估算附着流和分离流中压力的简单方法的准确性进行了量化。粒子图像测速技术(PIV)提供了获取压力场而非点测量值的可能性。可以使用多种方法从PIV测量中获取压力,然而,目前的先进技术需要昂贵的设备和数据处理。作为一种替代方法,我们旨在量化从快照(非时间分辨)二维平面PIV(可用的最简单类型的PIV)估算瞬时压力的有效性。为了弥补时间信息的损失,我们依靠泰勒假设(TH)用空间梯度代替时间信息。将我们的方法应用于肋条上湍流边界层流动的高分辨率二维速度数据,结果表明在平均值和波动方面与参考压力测量结果具有中等至良好的一致性。为了评估二维TH方法在平均值和波动统计之外的性能,我们获取了同一流动的时间分辨测量值,并确定了我们方法得出的压力与参考测量值之间的时间相关值。总体而言,所有测量位置的相关性都达到了良好的值。为了进行比较,我们还应用了两种时间分辨方法,它们获得的相关值与我们的方法相似。在三维时间分辨速度数据上进一步评估二维TH方法对湍流边界层的性能,并与三维方法进行比较。二维TH、三维TH和三维伪拉格朗日方法的均方根(RMS)压力波动紧密跟随直接数值模拟(DNS)的压力波动分布。对湍流通道流的合成PIV数据(基于DNS)进行的类似分析进一步支持了这些关于RMS压力估计的观察结果。在这种情况下,二维TH方法与DNS压力场之间的空间相关值与肋条上湍流中实现的时间相关性相似。最后,我们讨论了瞬时压力估计的准确性,并提供了一个经验法则来确定二维TH方法的压力波动估计可能失败的区域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/484f/6394750/864aed8c3fa1/348_2019_2678_Fig1_HTML.jpg

相似文献

1
Pressure from 2D snapshot PIV.来自二维快照粒子图像测速技术的压力。
Exp Fluids. 2019;60(2):32. doi: 10.1007/s00348-019-2678-5. Epub 2019 Jan 25.

引用本文的文献

1
Distributed feather-inspired flow control mitigates stall and expands flight envelope.分布式仿羽毛流控技术可缓解失速,扩大飞行包线。
Proc Natl Acad Sci U S A. 2024 Nov 5;121(45):e2409268121. doi: 10.1073/pnas.2409268121. Epub 2024 Oct 28.
2
Hydrodynamic stress maps on the surface of a flexible fin-like foil.柔性鱼鳍状箔片表面的流体动力应力图。
PLoS One. 2021 Jan 12;16(1):e0244674. doi: 10.1371/journal.pone.0244674. eCollection 2021.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验