Suppr超能文献

一种用于生理时间序列多重分形多尺度分析的快速确定性有限自动机算法。

A Fast DFA Algorithm for Multifractal Multiscale Analysis of Physiological Time Series.

作者信息

Castiglioni Paolo, Faini Andrea

机构信息

IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy.

Department of Cardiovascular Neural and Metabolic Sciences, Istituto Auxologico Italiano, IRCCS, S.Luca Hospital, Milan, Italy.

出版信息

Front Physiol. 2019 Mar 1;10:115. doi: 10.3389/fphys.2019.00115. eCollection 2019.

Abstract

Detrended fluctuation analysis (DFA) is a popular tool in physiological and medical studies for estimating the self-similarity coefficient, α, of time series. Recent researches extended its use for evaluating multifractality (where α is a function of the multifractal parameter ) at different scales . In this way, the multifractal-multiscale DFA provides a bidimensional surface α() to quantify the level of multifractality at each scale separately. We recently showed that scale resolution and estimation variability of α() can be improved at each scale by splitting the series into maximally overlapped blocks. This, however, increases the computational load making DFA estimations unfeasible in most applications. Our aim is to provide a DFA algorithm sufficiently fast to evaluate the multifractal DFA with maximally overlapped blocks even on long time series, as usually recorded in physiological or clinical settings, therefore improving the quality of the α() estimate. For this aim, we revise the analytic formulas for multifractal DFA with first- and second-order detrending polynomials (i.e., DFA and DFA) and propose a faster algorithm than the currently available codes. Applying it on synthesized fractal/multifractal series we demonstrate its numerical stability and a computational time about 1% that required by traditional codes. Analyzing long physiological signals (heart-rate tachograms from a 24-h Holter recording and electroencephalographic traces from a sleep study), we illustrate its capability to provide high-resolution α() surfaces that better describe the multifractal/multiscale properties of time series in physiology. The proposed fast algorithm might, therefore, make it easier deriving richer information on the complex dynamics of clinical signals, possibly improving risk stratification or the assessment of medical interventions and rehabilitation protocols.

摘要

去趋势波动分析(DFA)是生理和医学研究中用于估计时间序列自相似系数α的常用工具。最近的研究将其应用扩展到评估不同尺度下的多重分形性(其中α是多重分形参数的函数)。通过这种方式,多重分形 - 多尺度DFA提供了一个二维表面α(),以分别量化每个尺度下的多重分形性水平。我们最近表明,通过将序列划分为最大重叠块,可以在每个尺度上提高α()的尺度分辨率和估计变异性。然而,这增加了计算量,使得DFA估计在大多数应用中不可行。我们的目标是提供一种足够快的DFA算法,即使对于长时间序列,也能使用最大重叠块来评估多重分形DFA,就像在生理或临床环境中通常记录的那样,从而提高α()估计的质量。为了实现这一目标,我们修订了使用一阶和二阶去趋势多项式(即DFA和DFA)的多重分形DFA的解析公式,并提出了一种比现有代码更快的算法。将其应用于合成的分形/多重分形序列,我们证明了其数值稳定性以及计算时间约为传统代码所需时间的1%。通过分析长生理信号(24小时动态心电图记录的心率图和睡眠研究中的脑电图记录),我们展示了其提供高分辨率α()表面的能力,该表面能更好地描述生理时间序列的多重分形/多尺度特性。因此,所提出的快速算法可能会使获取关于临床信号复杂动态的更丰富信息变得更容易,这可能会改善风险分层或医学干预及康复方案的评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验