Suppr超能文献

使用网络分析和机器学习识别创伤性脑损伤患者管理的关键生理和临床因素。

Identifying key physiological and clinical factors for traumatic brain injury patient management using network analysis and machine learning.

作者信息

Kuruwita Arachchige Hasitha, Kay Ng Shu, Liew Alan Wee-Chung, Richards Brent, Haseler Luke, Kumar Kuldeep, Ross Kelvin, Zhang Ping

机构信息

School of Medicine and Dentistry, Griffith University, Queensland, Australia.

School of ICT, Griffith University, Queensland, Australia.

出版信息

PLoS One. 2025 Jul 28;20(7):e0328870. doi: 10.1371/journal.pone.0328870. eCollection 2025.

Abstract

In the intensive care unit (ICU), managing traumatic brain injury (TBI) patients presents significant challenges due to the dynamic interaction between physiological and clinical markers. This study aims to uncover these subtle interconnections and identify the key ICU markers for the timely care of TBI patients using advanced machine-learning techniques. We combined correlation-based network analysis and graph neural network (GNN) techniques to explore relationships among electrocardiography (ECG) features, vital signs, pathology test results, Glasgow Coma Scale (GCS) scores, and demographics from 29 TBI patients admitted to the Gold Coast University Hospital (GCUH). Our findings highlighted that the final GCS index strongly correlated with arterial and diastolic blood pressure variations, patient demographics such as gender and age, and certain heart rate variability (HRV) features. Variability in diastolic blood pressure, GCS, and pNN50 (an HRV measure) demonstrated strong associations with several other physiological and clinical markers during the first 12 hours post-ICU admission. HRV features and variability in physiological signals during the first 12 hours in the ICU are important factors in assessing the severity of TBI patients.

摘要

在重症监护病房(ICU),由于生理指标和临床指标之间的动态相互作用,管理创伤性脑损伤(TBI)患者面临重大挑战。本研究旨在利用先进的机器学习技术揭示这些细微的相互联系,并确定用于及时护理TBI患者的关键ICU指标。我们结合基于相关性的网络分析和图神经网络(GNN)技术,探讨了黄金海岸大学医院(GCUH)收治的29例TBI患者的心电图(ECG)特征、生命体征、病理检查结果、格拉斯哥昏迷量表(GCS)评分和人口统计学数据之间的关系。我们的研究结果表明,最终的GCS指数与动脉血压和舒张压变化、性别和年龄等患者人口统计学特征以及某些心率变异性(HRV)特征密切相关。在入住ICU后的前12小时内,舒张压、GCS和pNN50(一种HRV测量指标)的变异性与其他几个生理和临床指标表现出强烈关联。ICU入住后前12小时内的HRV特征和生理信号变异性是评估TBI患者严重程度的重要因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0f8/12303317/12ed3a8c3fa0/pone.0328870.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验