Medina Ruben, Sánchez René-Vinicio, Cabrera Diego, Cerrada Mariela, Estupiñan Edgar, Ao Wengang, Vásquez Rafael E
CIBYTEL-Engineering School, Universidad de Los Andes, Mérida 5101, Venezuela.
GIDTEC, Universidad Politécnica Salesiana, Cuenca 010105, Ecuador.
Sensors (Basel). 2024 Jan 11;24(2):0. doi: 10.3390/s24020461.
Reciprocating compressors and centrifugal pumps are rotating machines used in industry, where fault detection is crucial for avoiding unnecessary and costly downtime. A novel method for fault classification in reciprocating compressors and multi-stage centrifugal pumps is proposed. In the feature extraction stage, raw vibration signals are processed using multi-fractal detrended fluctuation analysis (MFDFA) to extract features indicative of different types of faults. Such MFDFA features enable the training of machine learning models for classifying faults. Several classical machine learning models and a deep learning model corresponding to the convolutional neural network (CNN) are compared with respect to their classification accuracy. The cross-validation results show that all models are highly accurate for classifying the 13 types of faults in the centrifugal pump, the 17 valve faults, and the 13 multi-faults in the reciprocating compressor. The random forest subspace discriminant (RFSD) and the CNN model achieved the best results using MFDFA features calculated with quadratic approximations. The proposed method is a promising approach for fault classification in reciprocating compressors and multi-stage centrifugal pumps.
往复式压缩机和离心泵是工业中使用的旋转机械,故障检测对于避免不必要的高成本停机至关重要。本文提出了一种用于往复式压缩机和多级离心泵故障分类的新方法。在特征提取阶段,使用多重分形去趋势波动分析(MFDFA)处理原始振动信号,以提取指示不同类型故障的特征。这些MFDFA特征能够训练用于故障分类的机器学习模型。比较了几种经典机器学习模型和对应于卷积神经网络(CNN)的深度学习模型的分类精度。交叉验证结果表明,所有模型对离心泵中的13种故障类型、17种阀门故障以及往复式压缩机中的13种多重故障进行分类时都具有很高的准确性。随机森林子空间判别(RFSD)和CNN模型使用二次近似计算的MFDFA特征取得了最佳结果。所提出的方法是往复式压缩机和多级离心泵故障分类的一种有前景的方法。