Bao Lipiao, Yu Pengyuan, Pan Changwang, Shen Wangqiang, Lu Xing
State Key Laboratory of Materials Processing and Die & Mould Technology , School of Materials Science and Engineering , Huazhong University of Science and Technology , 1037 Luoyu Road , Wuhan , 430074 , China . Email:
Chem Sci. 2018 Dec 17;10(7):2153-2158. doi: 10.1039/c8sc04906h. eCollection 2019 Feb 21.
Revealing the transformation routes among existing fullerene isomers is key to understanding the formation mechanism of fullerenes which is still unclear now because of the absence of typical key links. Herein, we have crystallographically identified four new fullerene cages, namely, (27)-C, (7)-C, (13)-C and (11)-C, in the form of Eu@C , which are important links to complete a transformation map that contains as many as 98% (176 compounds in total) of the reported metallofullerenes with clear cage structures (C , 2 = 86-74). Importantly, the mutual transformations between the metallofullerene isomers included in the map require only one or two well-established steps (Stone-Wales transformation and/or C insertion/extrusion). Moreover, structural analysis demonstrates that the unique (27)-C cage may serve as a key point in the map and is directly transformable from a graphene fragment. Thus, our work provides important insights into the formation mechanism of fullerenes.
揭示现有富勒烯异构体之间的转化途径是理解富勒烯形成机制的关键,由于缺乏典型的关键环节,富勒烯的形成机制目前仍不清楚。在此,我们通过晶体学方法鉴定了四种新的富勒烯笼,即(27)-C、(7)-C、(13)-C和(11)-C,它们以Eu@C的形式存在,是完成一个转化图谱的重要环节,该图谱包含了多达98%(总共176种化合物)具有明确笼结构(C,2 = 86 - 74)的已报道金属富勒烯。重要的是,图谱中包含的金属富勒烯异构体之间的相互转化仅需一两个公认的步骤(斯通-威尔士转化和/或C插入/挤出)。此外,结构分析表明,独特的(27)-C笼可能是图谱中的关键点,并且可直接从石墨烯片段转化而来。因此,我们的工作为富勒烯的形成机制提供了重要的见解。